Tissue mechanics and expression of TROP2 in oral squamous cell carcinoma with varying differentiation

Atomic Force Microscopy ( AFM ) can be utilized to determine the mechanical properties of tumor tissues in different kinds of cancers, for example breast cancer, liver cancer and lung cancer.

Oral squamous cell carcinoma (OSCC) is a common subtype of head and neck and other malignant tumors that occurs in increasing numbers. It is therefore important to learn more about the biological factors connected with the early diagnosis and treatment of OSCC. *

The human trophoblast cell surface antigen 2 (TROP2), which is also called tumor-associated calcium signal transduction-2 (TACSTD-2), is a surface glycoprotein encoded by TACSTD. *

Among the various biochemical mechanisms involved in tumorigenesis, the role of β-catenin has been studied extensively. This has shed light on the biological functions of TROP2 and its use as a prognostic biomarker for OSCC. *

TROP2 regulates tumorigenic properties including cancer cell adhesion, invasion, and migration and is overexpressed in many human cancers. Inhibiting TROP2 expression has shown promise in clinical applications. *

In the article “Tissue mechanics and expression of TROP2 in oral squamous cell carcinoma with varying differentiation” Baoping Zhang, Shuting Gao, Ruiping Li, Yiting Li, Rui Cao, Jingyang Cheng, Yumeng Guo, Errui Wang, Ying Huang and Kailiang Zhang investigate the role of TROP2 in OSCC patients using a combination of biophysical approaches including atomic force microscopy. *

The authors demonstrate the tissue morphology and mechanics of OSCC samples during tumor development using NanoWorld Pointprobe® CONTR AFM probes for the Atomic Force Microscopy described in the article and they believe that their findings will help develop TROP2 in accurately diagnosing OSCC in tumors with different grades of differentiation. *

Figure 5 from Baoping Zhang et al. “Tissue mechanics and expression of TROP2 in oral squamous cell carcinoma with varying differentiation”:
Surface morphology of OSCC tissue sections via AFM detection, irregular morphology appeared in the low differentiation
NanoWorld Pointprobe CONTR AFM probes were used for the Atomic Force Microscopy
Figure 5 from Baoping Zhang et al. “Tissue mechanics and expression of TROP2 in oral squamous cell carcinoma with varying differentiation”:
Surface morphology of OSCC tissue sections via AFM detection, irregular morphology appeared in the low differentiation

*Baoping Zhang, Shuting Gao, Ruiping Li, Yiting Li, Rui Cao, Jingyang Cheng, Yumeng Guo, Errui Wang, Ying Huang and Kailiang Zhang
Tissue mechanics and expression of TROP2 in oral squamous cell carcinoma with varying differentiation
BMC Cancer volume 20, Article number: 815 (2020)
DOI: https://doi.org/10.1186/s12885-020-07257-7

Please follow this external link to read the whole article: https://rdcu.be/cfC9G

Open Access : The article “Tissue mechanics and expression of TROP2 in oral squamous cell carcinoma with varying differentiation” by Baoping Zhang, Shuting Gao, Ruiping Li, Yiting Li, Rui Cao, Jingyang Cheng, Yumeng Guo, Errui Wang, Ying Huang and Kailiang Zhang is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.

Intravascular adhesion and recruitment of neutrophils in response to CXCL1 depends on their TRPC6 channels

Representing a central element of the innate immune system, neutrophils are recruited from the blood stream to a site of inflammation. The recruitment process follows a well-defined sequence of events including adhesion to the blood vessel walls, migration, and chemotaxis to reach the inflammatory focus. A common feature of the underlying signalling pathways is the utilization of Ca2+ ions as intracellular second messengers. However, the required Ca2+ influx channels are not yet fully characterized.*

In the article “Intravascular adhesion and recruitment of neutrophils in response to CXCL1 depends on their TRPC6 channels” Otto Lindemann, Jan Rossaint, Karolina Najder, Sandra Schimmelpfennig, Verena Hofschröer, Mike Wälte, Benedikt Fels, Hans Oberleithner, Alexander Zarbock and Albrecht Schwab report a novel role for TRPC6, a member of the transient receptor potential (TRPC) channel family, in the CXCL1-dependent recruitment of murine neutrophil granulocytes.*

The authors describe how they tested whether TRPC6 channels are central elements of the signalling cascade underlying CXCR2-mediated neutrophil recruitment. They combined intravital microscopy, single-cell force spectroscopy with atomic force microscopy, Ca2+ imaging, and microfluidic flow chamber assays to investigate the role of TRPC6 channels in murine neutrophils for their recruitment in renal ischemia-reperfusion and cremaster models as well as in in vitro assays.*

The study reveals that TRPC6 channels in neutrophils are crucial signalling modules in their recruitment from the blood stream in response to CXCL1.*

The single-cell force spectroscopy experiments were performed by using atomic force microscopy (AFM) with NanoWorld Arrow-TL1 tipless cantilevers which were incubated prior to experiments for 30 min in Cell-Tak to make the AFM cantilever sticky for neutrophils.*

NanoWorld Arrow-TL1 Tipless AFM cantilever, single cantilever beam on a silicon support chip
NanoWorld Arrow-TL1
Tipless cantilever,
single cantilever beam on a silicon support chip

*Otto Lindemann, Jan Rossaint, Karolina Najder, Sandra Schimmelpfennig, Verena Hofschröer, Mike Wälte, Benedikt Fels, Hans Oberleithner, Alexander Zarbock and Albrecht Schwab
Intravascular adhesion and recruitment of neutrophils in response to CXCL1 depends on their TRPC6 channels
Journal of Molecular Medicine volume 98, pages349–360(2020)
DOI: https://doi.org/10.1007/s00109-020-01872-4

Please follow this external link to read the full article: https://link.springer.com/article/10.1007/s00109-020-01872-4

Open Access The article “ Intravascular adhesion and recruitment of neutrophils in response to CXCL1 depends on their TRPC6 channels “ by Otto Lindemann, Jan Rossaint, Karolina Najder, Sandra Schimmelpfennig, Verena Hofschröer, Mike Wälte, Benedikt Fels, Hans Oberleithner, Alexander Zarbock and Albrecht Schwab is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.