Meet us at MRS Fall 2018 this week

Got questions about AFM probes that you’ve always wantend to ask? You’re welcome to pass by NanoAndMore USA booth no. 610 at the 2018 MRS Fall Exhibit this week and meet NanoWorld CEO Manfred Detterbeck there.

NanoWorld AFM probes CEO Manfred Detterbeck at NanoAndMore USA booth no. 610 at MRS Fall 2018
NanoWorld CEO Manfred Detterbeck at NanoAndMore USA booth no. 610 at MRS Fall 2018

Meet our CEO at AVS 65th International Symposium and Exhibition

Are you visiting the 65th AVS International Symposium and Exhibition in Long Beach CA today? If yes, you might meet our CEO Manfred Detterbeck who is passing by as well.

NanoWorld CEO Manfred Detterbeck at AVS 65th AVS International Symposium and Exhibition at Long Beach CA NanoWorld AFM probes
NanoWorld CEO Manfred Detterbeck at AVS 65th AVS International Symposium and Exhibition at Long Beach CA

 

Long Beach Convention Center venue of the AVS 65th International Symposium and Exhibition
Long Beach Convention Center venue of the AVS 65th International Symposium and Exhibition

Vertical Light Sheet Enhanced Side-View Imaging for AFM Cell Mechanics Studies

Atomic Force Microscopy is a powerful tool for evaluating cell mechanics.
In the recent article “Vertical Light Sheet Enhanced Side-View Imaging for AFM Cell Mechanics Studies” by Kellie Beicker, E. Timothy O’Brien III, Michael R. Falvo, Richard Superfine published in Nature Scientific Reports, the authors combine sideways imaging and a vertical light sheet illumination system integrated with AFM to achieve their results.

5 µm polystyrene beads attached to NanoWorld Arrow-TL1 tipless AFM probes were used.

igure 5 from Vertical Light Sheet Enhanced Side-View Imaging for AFM Cell Mechanics Studies: Membrane and nuclear displacements observed in response to force-rupture events between the AFM-tip and cell membrane. (a) Retraction portion of force-indentation curve with important points (A-G) identified. A, the point of zero force application to the cell, B-F, force-rupture peaks, and G, after bead releases from cell. (b) A closer examination of peaks E and F with sub-peaks of the E rupture event identified. No point is shown for E1 because this is the frame immediately following Peak E0. Inset indicates regions where displacement is measured between points E and F highlighted in green. These regions were determined through difference imaging using frames taken at E and F. (c) Regions of cell displacements determined through difference imaging highlighted in green for the sub-peaks indicated in (b). Yellow dashed lines indicate outline of AFM mounted bead. Scale bars = 5 um. NanoWorld Arrow-TL1 tipless AFM cantilevers were used.
Figure 5 from Beicker et. al Vertical Light Sheet Enhanced Side-View Imaging for AFM Cell Mechanics Studies: Membrane and nuclear displacements observed in response to force-rupture events between the AFM-tip and cell membrane. (a) Retraction portion of force-indentation curve with important points (A-G) identified. A, the point of zero force application to the cell, B-F, force-rupture peaks, and G, after bead releases from cell. (b) A closer examination of peaks E and F with sub-peaks of the E rupture event identified. No point is shown for E1 because this is the frame immediately following Peak E0. Inset indicates regions where displacement is measured between points E and F highlighted in green. These regions were determined through difference imaging using frames taken at E and F. (c) Regions of cell displacements determined through difference imaging highlighted in green for the sub-peaks indicated in (b). Yellow dashed lines indicate outline of AFM mounted bead. Scale bars = 5 um.

Kellie Beicker, E. Timothy O’Brien III, Michael R. Falvo, Richard Superfine
Vertical Light Sheet Enhanced Side-View Imaging for AFM Cell Mechanics
Studies
Nature Scientific Reports, volume 8, Article number: 1504 (2018)
DOI: https://doi.org/10.1038/s41598-018-19791-3

For the full article please follow this external link: https://rdcu.be/59FM

The article Beicker et. al, Vertical Light Sheet Enhanced Side-View Imaging for AFM Cell Mechanics Studies is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.