Piezoelectric property of PZT nanofibers characterized by resonant piezo-force microscopy

Nano-piezoelectric materials such as 1D piezoelectric nanofibers, nanowires, and nanobelts have attracted a lot of research interest in recent years. *

Because of their active property that can transform strain energy into electricity, 1D piezoelectric nano-materials can be building blocks for nano-generators, strain sensors, acoustic sensors, force sensors, biosensors, self-powered drug delivery systems, piezoelectric transistors and other intelligent systems. *

The most important property of these active materials is their ability to convert mechanical energy into electrical energy and vice versa. *

Therefore, researchers started developing nano-sized piezoelectric materials in hope of achieving better piezoelectric properties. *

The characterization of these piezoelectric properties, especially measuring the piezoelectric strain coefficients, remains a challenge. *

The Atomic Force Microscopy (AFM)-based method to directly measure nano-materials’ piezoelectric strain coefficients is widely used.

However, several factors such as the extremely small piezoelectric deformation, the influence from the parasitic electrostatic force, and the environmental noise can make the measurement results questionable. *

In the article “Piezoelectric property of PZT nanofibers characterized by resonant piezo-force microscopy” Guitao Zhang, Xi Chen, Weihe Xu, Wei-Dong Yao, and Yong Shi address these issues by introducing a resonant piezo-force microscopy method and describing how it was used to accurately measure the piezoelectric deformation from 1D piezoelectric nanofibers. *

During the measurement the AFM tip was brought into contact with the piezoelectric sample and set to work close to the AFM tip’s first resonant frequency. *

The AFM probe used in this test was a platinum iridium coated NanoWorld Arrow-CONTPt (typical force constant 0.2 N/m, typical resonant frequency 14 KHz. The PtIr coating makes the AFM tip conductive and at the same time enhances the laser reflection from the detector facing side of the AFM cantilever to the photodetector. *

A lock-in amplifier was used to pick up the sample’s deformation signal at the testing frequency. By using this technique, the piezoelectric strain constant d33 of the Lead Zirconate Titanate (PZT) nanofiber with a diameter of 76 nm was measured. The result showed that d33 of this PZT nanofiber was around 387 pm/V. Meanwhile, by tracking the piezoelectric deformation phase image, domain structures inside PZT nanofibers were identified. *

Figure 5 from “Piezoelectric property of PZT nanofibers characterized by resonant piezo-force microscopy” by Guitao Zhang et al. : Piezoelectric deformation amplitude image from a PZT nanofiber on a silicon dioxide substrate (a) and its cross-sectional view along the horizontal direction (b). Conductive NanoWorld Arrow-CONTPt AFM probes were used for the resonant piezo-force microscopy
Figure 5 from “Piezoelectric property of PZT nanofibers characterized by resonant piezo-force microscopy” by Guitao Zhang et al. :
Piezoelectric deformation amplitude image from a PZT nanofiber on a silicon dioxide substrate (a) and its cross-sectional view along the horizontal direction (b).

 

Figure 6 from “Piezoelectric property of PZT nanofibers characterized by resonant piezo-force microscopy” by Guitao Zhang et al. : (a) Piezoelectric deformation phase image from a PZT nanofiber on the silicon dioxide substrate and its 3D image (b). NanoWorld Arrow-CONTPt platinum iridium 5 coated AFM probes were used.
Figure 6 from “Piezoelectric property of PZT nanofibers characterized by resonant piezo-force microscopy” by Guitao Zhang et al. :
(a) Piezoelectric deformation phase image from a PZT nanofiber on the silicon dioxide substrate and its 3D image (b).

*Guitao Zhang, Xi Chen, Weihe Xu, Wei-Dong Yao and Yong Shi
Piezoelectric property of PZT nanofibers characterized by resonant piezo-force microscopy
AIP Advances 12, 035203 (2022)
DOI: https://doi.org/10.1063/5.0081109

The article “Piezoelectric property of PZT nanofibers characterized by resonant piezo-force microscopy” by Guitao Zhang, Xi Chen, Weihe Xu, Wei-Dong Yao and Yong Shi is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.

Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films

Boron doped diamond (BDD) has great potential in electrical, and electrochemical sensing applications. The growth parameters, substrates, and synthesis method play a vital role in the preparation of semiconducting BDD to metallic BDD. Doping of other elements along with boron (B) into diamond demonstrated improved efficacy of B doping and exceptional properties.*

In the article “Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films” Srinivasu Kunuku, Mateusz Ficek, Aleksandra Wieloszynska, Magdalena Tamulewicz-Szwajkowska, Krzysztof Gajewski, Miroslaw Sawczak, Aneta Lewkowicz, Jacek Ryl, Tedor Gotszalk and Robert Bogdanowicz describe how B and nitrogen (N) co-doped diamond has been synthesized on single crystalline diamond (SCD) IIa and SCD Ib substrates in a microwave plasma-assisted chemical vapor deposition process.*

The surface topography of the CVD diamond layers was investigated using atomic force microscopy (AFM), and Kelvin probe force microscopy (KPFM) was employed to measure the contact potential difference (CPD) to calculate the work function of these CVD diamond layers.*

Atomic force microscopy topography depicted the flat and smooth surface with low surface roughness for low B doping, whereas surface features like hillock structures and un-epitaxial diamond crystals with high surface roughness were observed for high B doping concentrations. KPFM measurements revealed that the work function (4.74–4.94 eV) has not varied significantly for CVD diamond synthesized with different B/C concentrations.*

NanoWorld ARROW-EFM conductive platinumirdidium5 coated AFM probes with a typical spring constant of 2.8 N/m and a typical resonant frequency of 75 kHz were used.*

Figure 2 from “Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films “ by Srinivasu Kunuku et al: AFM topography of B/N co-doped CVD diamond on (with fixed N/C = 0.02) SCD IIa; (a) B/C ∼ 2500 ppm (b) B/C ∼ 5000 ppm (c) B/C ∼ 7500 ppm, and KPFM CPD images of B/N co-doped CVD diamond (with fixed N/C = 0.02) on SCD IIa; (d) B/C ∼ 2500 ppm (e) B/C ∼ 5000 ppm (f) B/C ∼ 7500 ppm. NanoWorld Arrow-EFM platinumiridium coated AFM probes were used for the KPFM and surface topography measurements.
Figure 2 from “Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films “ by Srinivasu Kunuku et al:
AFM topography of B/N co-doped CVD diamond on (with fixed N/C = 0.02) SCD IIa; (a) B/C ∼ 2500 ppm (b) B/C ∼ 5000 ppm (c) B/C ∼ 7500 ppm, and KPFM CPD images of B/N co-doped CVD diamond (with fixed N/C = 0.02) on SCD IIa; (d) B/C ∼ 2500 ppm (e) B/C ∼ 5000 ppm (f) B/C ∼ 7500 ppm.

*Srinivasu Kunuku, Mateusz Ficek, Aleksandra Wieloszynska, Magdalena Tamulewicz-Szwajkowska, Krzysztof Gajewski, Miroslaw Sawczak, Aneta Lewkowicz, Jacek Ryl, Tedor Gotszalk and Robert Bogdanowicz
Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films
Nanotechnology (2022),  33 125603
DOI: https://doi.org/10.1088/1361-6528/ac4130

Please follow this external link to read the full article: https://doi.org/10.1088/1361-6528/ac4130

Open Access The article “Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films” by Srinivasu Kunuku, Mateusz Ficek, Aleksandra Wieloszynska, Magdalena Tamulewicz-Szwajkowska, Krzysztof Gajewski, Miroslaw Sawczak, Aneta Lewkowicz, Jacek Ryl, Tedor Gotszalk and Robert Bogdanowicz is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Optimized positioning through maximized tip visibility – Arrow AFM probes screencast passes 500 views mark

The screencast about NanoWorld Arrow Silicon AFM probes held byNanoWorld AG CEO Manfred Detterbeck has just passed the 500 views mark. Congratulations Manfred!

NanoWorld Arrow™ AFM probes are designed for easy AFM tip positioning and high resolution AFM imaging and are very popular with AFM users due to the highly symetric scans that are possible with these AFM probes because of their special tip shape. They fit to all well-known commercial SPMs (Scanning Probe Microscopes) and AFMs (Atomic Force Microscopes). The Arrow AFM probe consists of an AFM probe support chip with an AFM cantilever which has a tetrahedral AFM tip at its triangular free end.

The Arrow AFM probe is entirely made of monolithic, highly doped silicon.

The unique Arrow™ shape of the AFM cantilever with the AFM tip always placed at the very end of the AFM cantilever allows easy positioning of the AFM tip on the area of interest.
The Arrow AFM probes are available for non-contact mode, contact mode and force modulation mode imaging and are also available with a conductive platinum iridum coating. Furthermore the Arrow™ AFM probe series also includes a range of tipless AFM cantilevers and AFM cantilever arrays as well as dedicated ultra-high frequency Arrow AFM probes for high speed AFM.

To find out more about the different variations please have a look at:

https://www.nanoworld.com/arrow-afm-tips

You can also find various application examples for the Arrow AFM probes in the NanoWorld blog. For a selection of these articles just click on the “Arrow AFM probes” tag on the bottom of this blog entry.