Type: Arrow™ CONTPt

Contact Mode - PtIr5 coating

Logo
Cantilever Data Value Range*
Resonance Frequency 14 kHz 10 - 19 kHz
Force Constant 0.2 N/m 0.06 - 0.38 N/m
Length 450 µm 445 - 455 µm
Mean Width 45 µm 40 - 50 µm
Thickness 2 µm 1.5 - 2.5 µm
ARROW™ AFM tip

ARROW™ AFM tip More images

Product Description

Optimized positioning through maximized AFM tip visibility

NanoWorld® Arrow™ CONTPt AFM probes are designed for Contact Mode imaging. Furthermore this type can be used for Force Distance Spectroscopy Mode or Pulsed Force Mode (PFM). The CONT type is optimized for high sensitivity due to a low Force Constant.

All SPM and AFM probes of the Arrow™ series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. These AFM probes feature a rectangular AFM cantilever with a triangular free end and a tetrahedral AFM tip with a typical height of 10 - 15 µm.

Additionally, this AFM probe offers an AFM tip radius of curvature of less than 25 nm.

The unique Arrow™ shape with the AFM tip position at the very end of the AFM cantilever allows easy positioning of the AFM tip on the area of interest.

Image A trapezoidal cross section of the AFM cantilever and therefore 30% wider (e.g. NCH) AFM cantilever detector side result in easier and faster laser adjustment. Additionally, because there is simply more space to place and reflect the laser beam, a higher SUM signal is reached.

Tip shape: Arrow

Coating: Electrically Conductive

PtIr5 Coating

The PtIr5 coating consists of a 23 nm thick platinum iridium5 layer deposited on both sides of the AFM cantilever. The tip side coating enhances the conductivity of the AFM tip and allows electrical contacts. The detector side coating enhances the reflectance of the laser beam by a factor of 2 and prevents light from interfering within the AFM cantilever.

The coating process is optimized for stress compensation and wear resistance. Wear at the AFM tip can occur if operating in contact-, friction- or force modulation mode. As the coating is almost stress-free the bending of the AFM cantilever due to stress is less than 2 degrees.

Order Codes

Order Code Quantity Data Sheet
ARROW-CONTPt-10 10 Nominal values
ARROW-CONTPt-20 20 Nominal values
ARROW-CONTPt-50 50 Nominal values
ARROW-CONTPt-W 380 Nominal values

NanoWorld® Platinum / Iridium5 (PtIr5) Coated AFM Tips Screencast

Subscribe to NanoWorld® Youtube Channel

Bruker® is a trademark of Bruker Corporation

Scientific publications mentioning use of this AFM probe


Xu Z, Liu Y, Zhou L, Xu E, Li W, Han H, Gu J, Li Q, Lin YH, Nan CW, Shen Y
Interface‐Engineered Polar Topological Domains in Ferroelectric Nematic Liquid Crystals
Advanced Materials. 2025 Apr 14:2501395
DOI: https://doi.org/10.1002/adma.202501395


Sikora A, Gajewski K, Badura D, Pruchnik B, Piasecki T, Raczkowski K, Gotszalk T.
Conductive Atomic Force Microscopy—Ultralow-Current Measurement Systems for Nanoscale Imaging of a Surface’s Electrical Properties
Sensors (Basel, Switzerland). 2024 Aug 30;24(17):5649
DOI: https://doi.org/10.3390/s24175649


Guo M, Xu E, Huang H, Guo C, Chen H, Chen S, He S, Zhou L, Ma J, Shen Z, Xu B
Electrically and mechanically driven rotation of polar spirals in a relaxor ferroelectric polymer
Nature Communications. 2024 Jan 8;15(1):348
DOI: https://doi.org/10.1038/s41467-023-44395-5


Pruchnik BC, Fidelus JD, Gacka E, Mika K, Zaraska L, Sulka GD, Gotszalk TP
Atomic force microscopy in mechanical measurements of single nanowires
Ultramicroscopy. 2024 Sep 1;263:113985
DOI: https://doi.org/10.1016/j.ultramic.2024.113985


Guo M, Xu E, He S, Li W, Li Q, Ma J, Lin YH, Nan CW, Shen Y
A pyrotoroidic transition in ferroelectric polymer
Matter. 2022 Sep 7;5(9):3041-52
DOI: https://doi.org/10.1016/j.matt.2022.06.016 


Sun YL, Montz BJ, Selhorst R, Tang HY, Zhu J, Nevin KP, Woodard TL, Ribbe AE, Russell TP, Nonnenmann SS, Lovley DR
Solvent-induced assembly of microbial protein nanowires into superstructured bundles
Biomacromolecules. 2021 Feb 16;22(3):1305-11
DOI: https://doi.org/10.1021/acs.biomac.0c01790


Ha N, Park J, Park SH, Seo E, Lim JH, Lee SJ
Domino‐like water transport on Tillandsia through flexible trichome wings
New phytologist. 2021 Sep;231(5):1906-22
DOI: https://doi.org/10.1111/nph.17336


Ueki T, Walker DJ, Nevin KP, Ward JE, Woodard TL, Nonnenmann SS, Lovley DR
Pili Expression in Geobacter sulfurreducens Lacking the Putative Gene for the PilB Pilus Assembly Motor
BioRxiv. 2021 Jul 11:2021-07
DOI: https://doi.org/10.1128/spectrum.00877-21


Ueki T, Walker DJ, Woodard TL, Nevin KP, Nonnenmann SS, Lovley DR
An Escherichia coli chassis for production of electrically conductive protein nanowires
ACS synthetic biology. 2020 Mar 3;9(3):647-54
DOI: https://doi.org/10.1021/acssynbio.9b00506


Guo M, Jiang J, Qian J, Liu C, Ma J, Nan CW, Shen Y
Flexible robust and high‐density FeRAM from array of organic ferroelectric nano‐lamellae by self‐assembly
Advanced Science. 2019 Mar;6(6):1801931
DOI: https://doi.org/10.1002/advs.201801931


Ueki T, Walker DJ, Tremblay PL, Nevin KP, Ward JE, Woodard TL, Nonnenmann SS, Lovley DR
Decorating the outer surface of microbially produced protein nanowires with peptides
ACS synthetic biology. 2019 Jul 12;8(8):1809-17.
DOI: https://doi.org/10.1021/acssynbio.9b00131


Esfahani EN, Li T, Huang B, Xu X, Li J
Piezoelectricity of atomically thin WSe2 via laterally excited scanning probe microscopy
Nano Energy. 2018 Oct 1;52:117-22
DOI: https://doi.org/10.1016/j.nanoen.2018.07.050


Zhang Z, Schwanz D, Narayanan B, Kotiuga M, Dura JA, Cherukara M, Zhou H, Freeland JW, Li J, Sutarto R, He F
Perovskite nickelates as electric-field sensors in salt water
Nature. 2018 Jan 4;553(7686):68-72
DOI: https://doi.org/10.1038/nature25008


Le Paven C, Benzerga R, Ferri A, Fasquelle D, Laur V, Le Gendre L, Marlec F, Tessier F, Cheviré F, Desfeux R, Saitzek S
Ferroelectric and dielectric study of strontium tantalum based perovskite oxynitride films deposited by reactive rf magnetron sputtering
Materials Research Bulletin. 2017 Dec 1;96:126-32
DOI: https://doi.org/10.1016/j.materresbull.2016.11.030


Pereira MD, Lima FA, Ribeiro TS, Da Silva MR, Almeida RQ, Barros EB, Vasconcelos IF
Application of Fe-doped SnO2 nanoparticles in organic solar cells with enhanced stability
Optical Materials. 2017 Feb 1;64:548-56
DOI: https://doi.org/10.1016/j.optmat.2017.01.023


Jiang Z, Qing Q, Xie P, Gao R, Lieber CM
Kinked p–n junction nanowire probes for high spatial resolution sensing and intracellular recording
Nano letters. 2012 Mar 14;12(3):1711-6.
DOI: https://doi.org/10.1021/nl300256r

For more information contact: info@nanoworld.com

Pointprobe® is a registered trademark of NanoWorld AG

All data are subject to change without notice.

NanoWorld AG
Rue des Saars 10
CH-2000 Neuchâtel,
Switzerland
www.nanoworld.com

For detailed information about our AFM probe product series please see below: