Ultralow Strain-Induced Emergent Polarization Structures in a Flexible Freestanding BaTiO3 Membrane

Until now, diverse polarization structures and topological domains are obtained in ferroelectric thin films or heterostructures, and the polarization switching and subsequent domain nucleation are found to be more conducive to building energy-efficient and multifunctional polarization structures.*

In the article “Ultralow Strain-Induced Emergent Polarization Structures in a Flexible Freestanding BaTiO3 Membrane” Jie Wang, Zhen Liu, Qixiang Wang, Fang Nie, Yanan Chen, Gang Tian, Hong Fang, Bin He, Jinrui Guo, Limei Zheng, Changjian Li, Weiming Lü and Shishen Yan introduce a continuous and periodic strain in a flexible freestanding BaTiO3 membrane to achieve a zigzag morphology. *

The authors successfully fabricated freestanding BTO membranes with a zigzag morphology using the water-solvation process. *

These films exhibited remarkable curvature-dependent long-range coherence and periodic distributions of polarization. Through experiments and phase-field simulations, Jie Wang et al. observed the presence of H–H and T–T polarization boundaries as well as the formation of large-scale chiral vortex domains. *

Interestingly, these singular polar structures could be induced by ultralow uniaxial and biaxial strains (≈0.5%), which is significantly lower than the previously reported values. The accumulation of charge was found to reduce the formation energy, making the singular polar structures more stable. *

This complicated polarization structure resulting from the morphological variation of the ferroelectric domain provides useful insights into the polarization structure and ferroelectric domain under strain engineering. *

The wrinkled ferroelectric oxides with different strained regions and correlated polarization distributions as well as tunable ferroelectricity can pave the way toward novel flexible electronics. *

Understanding the 3D polarization configuration of a wrinkled BTO membrane is crucial for revealing the relationship between the polarization structure and strain distribution.

To evaluate the polarization configuration, piezoresponse force microscopy (PFM) was employed to obtain the piezoresponse under both vertical and lateral modes (referred to as V-PFM and L-PFM, respectively), and the results are shown in Figure 2a from the article by Jie Wang et al. cited in this blogpost. *

The polarization structures in the freestanding wrinkled BTO membrane were characterized by a commercial scanning probe microscope (SPM).

When the conductive AFM probe (NanoWorld Arrow-EFM) with AC bias was in contact with the sample, the sample underwent regular expansions and contractions due to the inverse piezoelectric effect, which caused the AFM probe to oscillate with the sample.

The oscillation amplitude and phase signals were recorded, which corresponded to the piezoresponse strength and polarization orientation, respectively.

Dual AC resonance tracking PFM (DART-PFM) was used to track the shift in the contact resonance frequency caused by the surface roughness, avoid signal crosstalk, obtain more stable piezoelectric signals with higher sensitivity, and ensure the accuracy of data. The vertical deflection and torsional motion of the probe cantilever were used to detect the deformation of the sample, and the IP and OOP polarization components of the sample were obtained.

To determine the domain structures, both the vertical and lateral PFM images were recorded at different sample rotation angles. The local piezoresponse hysteresis loops were measured by fixing the PFM probe on the selected position and then applying a triangular-square waveform, accompanied with a small AC-driven voltage from the probe.

Electrostatic force microscopy (EFM) and scanning Kelvin probe force microscopy (SKPFM) are widely applied to obtain the surface potential of materials through a dual-channel method.

In the Nap mode, the first-line scanning is used to obtain the surface morphology information of the sample, and then the probe is lifted to a certain height to detect the long-range force (electrostatic force) signal. The operating principle of EFM can be simply interpreted as the phase difference imaging of probe vibration caused by the electrostatic force between the probe and sample. In SKPFM, a DC bias is applied to the conductive tip to balance the surface potential of the sample. The DC bias is equal to the potential difference between the tip and sample, thereby obtaining the relative surface potential distribution of the material. Therefore, EFM qualitatively reflects the potential properties of samples, and SKPFM quantifies the potential of samples.*

Figure 2 from Jie Wang et al. (2024), Ultralow Strain-Induced Emergent Polarization Structures in a Flexible Freestanding BaTiO3 Membrane:Domain structures of zigzag-wrinkled BTO film. a) Topographic image of wrinkled BTO film, giving rise to zigzag pattern. V-PFM and L-PFM amplitude and phase images for two different sample rotation angles of 0° and 90°. b) Line profiles of the height, OOP phase, and IP phase (0° and 90°) data (average over 6 pixels) along the red dotted lines in (a). c) Typical OOP and IP phase images overlapped on 3D morphology. The red and blue dotted curves indicate the position of the peak and valley, respectively. NanoWorld Arrow-EFM conductive AFM probes were used.
Figure 2 from Jie Wang et al. (2024), Ultralow Strain-Induced Emergent Polarization Structures in a Flexible Freestanding BaTiO3 Membrane:
Domain structures of zigzag-wrinkled BTO film. a) Topographic image of wrinkled BTO film, giving rise to zigzag pattern. V-PFM and L-PFM amplitude and phase images for two different sample rotation angles of 0° and 90°. b) Line profiles of the height, OOP phase, and IP phase (0° and 90°) data (average over 6 pixels) along the red dotted lines in (a). c) Typical OOP and IP phase images overlapped on 3D morphology. The red and blue dotted curves indicate the position of the peak and valley, respectively.

*Jie Wang, Zhen Liu, Qixiang Wang, Fang Nie, Yanan Chen, Gang Tian, Hong Fang, Bin He, Jinrui Guo, Limei Zheng, Changjian Li, Weiming Lü and Shishen Yan
Ultralow Strain-Induced Emergent Polarization Structures in a Flexible Freestanding BaTiO3 Membrane
Advanced Science, Volume 11, Issue 25, July 3, 2024, 2401657
DOI: https://doi.org/10.1002/advs.202401657

Open Access  The article “Ultralow Strain-Induced Emergent Polarization Structures in a Flexible Freestanding BaTiO3 Membrane” by Jie Wang, Zhen Liu, Qixiang Wang, Fang Nie, Yanan Chen, Gang Tian, Hong Fang, Bin He, Jinrui Guo, Limei Zheng, Changjian Li, Weiming Lü and Shishen Yan is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

NanoWorld at MicroNanoFabrication Annual Review Meeting – 24th Edition in Lausanne

Come and visit our booth at the #EPFL CMi 𝟮𝟬𝟮5 𝗠𝗶𝗰𝗿𝗼𝗡𝗮𝗻𝗼𝗙𝗮𝗯𝗿𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗔𝗻𝗻𝘂𝗮𝗹 𝗥𝗲𝘃𝗶𝗲𝘄 𝗠𝗲𝗲𝘁𝗶𝗻𝗴  at the SwissTech Convention Center in Lausanne next Tuesday May 13, 2025 to learn more about our AFM probes. We’re looking forward to seeing you.

Graphics showing the NanoWorld exhibition booth with 24 SEM images showing NanoWorld AFM probes for Atomic Force Microscopy and an invitation below to come and visit our booth at the EPFL CMi 𝟮𝟬𝟮5 𝗠𝗶𝗰𝗿𝗼𝗡𝗮𝗻𝗼𝗙𝗮𝗯𝗿𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗔𝗻𝗻𝘂𝗮𝗹 𝗥𝗲𝘃𝗶𝗲𝘄 𝗠𝗲𝗲𝘁𝗶𝗻𝗴 at the SwissTech Convention Center in Lausanne next Tuesday May 13, 2025 to learn more about our AFM probes. We’re looking forward to seeing you.
Come and visit our booth at the EPFL CMi 𝟮𝟬𝟮5 𝗠𝗶𝗰𝗿𝗼𝗡𝗮𝗻𝗼𝗙𝗮𝗯𝗿𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗔𝗻𝗻𝘂𝗮𝗹 𝗥𝗲𝘃𝗶𝗲𝘄 𝗠𝗲𝗲𝘁𝗶𝗻𝗴

Nanoscale resolved mapping of the dipole emission of hBN color centers with a scattering-type scanning near-field optical microscope

Color centers in hexagonal boron nitride (hBN) are promising candidates as quantum light sources for future technologies. *

In the article “Nanoscale resolved mapping of the dipole emission of hBN color centers with a scattering-type scanning near-field optical microscope “, Iris Niehues, Daniel Wigger, Korbinian Kaltenecker, Annika Klein-Hitpass , Philippe Roell, Aleksandra K. Dąbrowska, Katarzyna Ludwiczak, Piotr Tatarczak, Janne O. Becker , Robert Schmidt, Martin Schnell, Johannes Binder, Andrzej Wysmołek and Rainer Hillenbrand utilize a scattering-type near-field optical microscope (s-SNOM) to study the photoluminescence (PL) emission characteristics of such quantum emitters in metalorganic vapor phase epitaxy grown hBN. *

On the one hand, Iris Niehues et al. demonstrate direct near-field optical excitation and emission through interaction with the nanofocus of the AFM tip resulting in a subdiffraction limited tip-enhanced PL hotspot. *

On the other hand, the authors show that indirect excitation and emission via scattering from the AFM tip significantly increases the recorded PL intensity. This demonstrates that the tip-assisted PL (TAPL) process efficiently guides the generated light to the detector. *

Iris Niehues et al. apply the TAPL method to map the in-plane dipole orientations of the hBN color centers on the nanoscale. This work promotes the widely available s-SNOM approach to applications in the quantum domain including characterization and optical control. *

The investigation utilizes a scattering-type near-field optical microscope employing a metallized Arrow AFM tip ( NanoWorld Arrow-NCPt AFM probe) illuminated by monochromatic laser light. *

The AFM tip acts as an optical antenna, transforming the incident p-polarizedlight into a highly focused near field at the AFM tip apex, the so-called nanofocus. *

The nanofocus interacts with the sample leading to modified scattering from the AFM tip and encoding local sample properties.

In conventional s-SNOM operation, the elastically scattered light is recorded as function of sample position (note that the sample is scanned), yielding near-field optical images with a spatial resolution down to 10 nm. *

To supress background scattering, the AFM is operated in tapping mode and the detector signal is demodulated at a higher harmonic of the AFM tip’s oscillation frequency. *

In the article, Iris Niehues et al. use the s-SNOM instrument to study PL from individual hBN color centers. *

To that end, the inelastically tip-scattered light is recorded with a grating spectrometer coupled to a CCD camera. Note that signal demodulation has not been possible with the use of a CCD camera so far. It may be achieved employing a photomultiplier tube or similar. Importantly, the authors’ s-SNOM setup includes a high-quality, silver-protected off-axis parabolic mirror with a numerical aperture (NA) of 0.72, which optimizes the focusing and collection efficiency of the optical system and is crucial for the performed PL measurements. *

Characterization of photoluminescence mapping

In the specific experiments performed by “, Iris Niehues et al., the authors employ the near-field optical microscope in tapping mode, with low oscillation amplitudes between 20 nm and 30 nm, to detect PL signals influenced by the presence of the metallic AFM tip. *

They use standard metallic Arrow AFM tips (NanoWorld Arrow-NCPt) Throughout this study, Iris Niehues et al., use a 532 nm (2.33 eV) laser for the optical excitation of the hBN color centers. *

Figure 1 from Iris Niehues et al. 2025 “Nanoscale resolved mapping of the dipole emission of hBN color centers with a scattering-type scanning near-field optical microscope” :Photoluminescence (PL) measurement of a single color center taken with an AFM tip. The images are shown with the same color bar for better comparison of the observed PL intensities. (a) PL intensity map without the tip showing a diffraction limited emission spot. (b) PL spectrum of the studied emitter recorded with an extended integration time inside the arc in (c). The zero-phonon line (ZPL) and optical phonon sidebands (PSBs) of 160 meV are marked as well as the broad background PL (black line). (c) PL map of the same emitter with the AFM tip showing two subdiffraction limit features marked as “dot” and “arc.” (d) Lineprofiles along the dashed lines in (a) in black and (c) in red (dark measurement, bright Gaussian fits). The fitted full widths at half maximum (FWHM) are 110 nm (dot), 209 nm (arc), and 1,418 nm (w/o tip). (e) Schematic of the interference between direct and indirect excitation/emission of the color center via the AFM tip (TAPL). Inset shows the nanofocus interaction at the location of the color center explaining the dot (TEPL). (f) Analytical reproduction of the TAPL arc in (c) applying the model in (e). NanoWorld Arrow-NCPt AFM probes with a platinum iridium coating were used.
Figure 1 from Iris Niehues et al. 2025 “Nanoscale resolved mapping of the dipole emission of hBN color centers with a scattering-type scanning near-field optical microscope” :
Photoluminescence (PL) measurement of a single color center taken with an AFM tip. The images are shown with the same color bar for better comparison of the observed PL intensities. (a) PL intensity map without the tip showing a diffraction limited emission spot. (b) PL spectrum of the studied emitter recorded with an extended integration time inside the arc in (c). The zero-phonon line (ZPL) and optical phonon sidebands (PSBs) of 160 meV are marked as well as the broad background PL (black line). (c) PL map of the same emitter with the AFM tip showing two subdiffraction limit features marked as “dot” and “arc.” (d) Lineprofiles along the dashed lines in (a) in black and (c) in red (dark measurement, bright Gaussian fits). The fitted full widths at half maximum (FWHM) are 110 nm (dot), 209 nm (arc), and 1,418 nm (w/o tip). (e) Schematic of the interference between direct and indirect excitation/emission of the color center via the AFM tip (TAPL). Inset shows the nanofocus interaction at the location of the color center explaining the dot (TEPL). (f) Analytical reproduction of the TAPL arc in (c) applying the model in (e).

*Iris Niehues, Daniel Wigger, Korbinian Kaltenecker, Annika Klein-Hitpass , Philippe Roell, Aleksandra K. Dąbrowska, Katarzyna Ludwiczak, Piotr Tatarczak, Janne O. Becker , Robert Schmidt, Martin Schnell, Johannes Binder, Andrzej Wysmołek and Rainer Hillenbrand
Nanoscale resolved mapping of the dipole emission of hBN color centers with a scattering-type scanning near-field optical microscope
Nanophotonics, vol. 14, no. 3, 2025, pp. 335-342
DOI: https://doi.org/10.1515/nanoph-2024-0554

Open Access  The article “Nanoscale resolved mapping of the dipole emission of hBN color centers with a scattering-type scanning near-field optical microscope” by Iris Niehues, Daniel Wigger, Korbinian Kaltenecker, Annika Klein-Hitpass , Philippe Roell, Aleksandra K. Dąbrowska, Katarzyna Ludwiczak, Piotr Tatarczak, Janne O. Becker , Robert Schmidt, Martin Schnell, Johannes Binder, Andrzej Wysmołek and Rainer Hillenbrand is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.