New Insights in the Ion Beam Sputtering Deposition of ZnO-Fluoropolymer Nanocomposites

Surface modification treatments able to confer antistain/antibacterial properties to natural or synthetic materials are receiving increasing attention among scientists. Ion beam co-sputtering (IBS) of zinc oxide (ZnO) and poly-tetrafluoroethylene (PTFE) targets allows for the preparation of novel multifunctional coatings composed of antimicrobial ZnO nanoparticles (NPs) finely dispersed in an antistain PTFE polymeric matrix.*

In the article “New Insights in the Ion Beam Sputtering Deposition of ZnO-Fluoropolymer Nanocomposites” Maria Chiara Sportelli, Marco Valentini, Rosaria Anna Picca, Antonella Milella, Angelo Nacci, Antonio Valentini and Nicola Cioffi describe the use of X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and transmission electron microscopy (TEM) for the characterization of the IBS deposited coatings in order to obtain information on the materials’ surface composition, with deep insight into the nanocoatings’ morphology as a function of the ZnONP loadings.*

The AFM micrographs shown in this article were acquired on 150-nm-thick films in dynamic (“tapping”) mode, in air, using NanoWorld Pointprobe® NCL AFM probes.

Figure 2 from “New Insights in the Ion Beam Sputtering Deposition of ZnO-Fluoropolymer Nanocomposites” by Maria Chiara Sportelli et al.: Atomic force microscopy (AFM) micrographs of ZnO-CFx nanocomposites having an inorganic phase volume fraction of φ = 0.05 (a–a’), φ = 0.10 (b–b’), and φ = 0.15 (c–c’). NanoWorld Pointprobe® NCL AFM probes were used.
Figure 2 from “New Insights in the Ion Beam Sputtering Deposition of ZnO-Fluoropolymer Nanocomposites” by Maria Chiara Sportelli et al.: Atomic force microscopy (AFM) micrographs of ZnO-CFx nanocomposites having an inorganic phase volume fraction of φ = 0.05 (a–a’), φ = 0.10 (b–b’), and φ = 0.15 (c–c’).

*Maria Chiara Sportelli, Marco Valentini, Rosaria Anna Picca, Antonella Milella, Angelo Nacci, Antonio Valentini and Nicola Cioffi
New Insights in the Ion Beam Sputtering Deposition of ZnO-Fluoropolymer Nanocomposites
Applied Sciences 2018, 8(1), 77
DOI: 10.3390/app8010077

Please follow this external link for the full article: https://www.mdpi.com/2076-3417/8/1/77/htm

Open Access: The article « New Insights in the Ion Beam Sputtering Deposition of ZnO-Fluoropolymer Nanocomposites » by Maria Chiara Sportelli et al. is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Meet our CEO at AVS 65th International Symposium and Exhibition

Are you visiting the 65th AVS International Symposium and Exhibition in Long Beach CA today? If yes, you might meet our CEO Manfred Detterbeck who is passing by as well.

NanoWorld CEO Manfred Detterbeck at AVS 65th AVS International Symposium and Exhibition at Long Beach CA NanoWorld AFM probes
NanoWorld CEO Manfred Detterbeck at AVS 65th AVS International Symposium and Exhibition at Long Beach CA

 

Long Beach Convention Center venue of the AVS 65th International Symposium and Exhibition
Long Beach Convention Center venue of the AVS 65th International Symposium and Exhibition

Direct AFM-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics

In the article cited below Katherine Atamanuk, Justin Luria and Bryan D. Huey present “a new approach for directly mapping VOC (open-circuit voltage) with nanoscale resolution, requiring a single, standard-speed AFM scan. This leverages the concept of the proportional-integral-derivative (PID) feedback loop that underpins nearly all AFM topography imaging.”*

NanoWorld™ Pointprobe® CDT-NCHR conductive diamond coated silicon AFM probes were used in the described CT-AFM experiment.

Supporting information for «Direct AFM-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics”: Figure S1: Representative quasi-VOC* image from the measured photocurrent upon illumination during an applied voltage fixed at 700 mV. NANOSENSORS conductive diamond coated CDT-NCHR AFM probes were used in the described CT-AFM experiment
Supporting information for «Direct AFM-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics”: Figure S1: Representative quasi-VOC* image from the measured photocurrent upon illumination during an applied voltage fixed at 700 mV.

“Cadmium Telluride (CdTe) is an inexpensive thin-film photovoltaic with ca. 5% of the 2017 global market share for solar cells. To optimize the efficiency and reliability of these, or any electronic devices, a thorough understanding of their composition, microstructure, and performance is necessary as a function of device design, processing, and in-service conditions. Atomic force microscopy (AFM) has been a valuable tool for such characterization, especially of materials properties and device performance at the nanoscale. In the case of thin-film solar cells, local photovoltaic (PV) properties such as the open-circuit voltage, photocurrent, and work function have been demonstrated to vary by an order of magnitude, or more, within tens of nanometers […] Recently, property mapping with high spatial resolution by AFM has been further combined with the ability to serially mill a surface, in order to reveal underlying surface structures and uniquely develop three-dimensional (3D) nanoscale property maps. The most notable examples are based on pure current detection with the AFM to resolve conduction pathways in filamentary semiconducting devices and interconnects […], and tomographic AFM of photocurrents in polycrystalline solar cells during in situ illumination […].”*

*Katherine Atamanuk, Justin Luria, Bryan D. Huey
Direct AFM-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics
Beilstein Journal of Nanotechnology 2018, 9, 1802–1808.
doi: 10.3762/bjnano.9.171

The article cited above is part of the Thematic Series “Scanning probe microscopy for energy-related materials”.

Please follow this external link for the full article: https://www.beilstein-journals.org/bjnano/articles/9/171

The article “Direct AFM-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics” by Atamanuk et. al is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.