The screencast about NanoWorld Arrow Silicon AFM probes held byNanoWorld AG CEO Manfred Detterbeck has just passed the 500 views mark. Congratulations Manfred!
NanoWorld Arrow™ AFM probes are designed for easy AFM tip positioning and high resolution AFM imaging and are very popular with AFM users due to the highly symetric scans that are possible with these AFM probes because of their special tip shape. They fit to all well-known commercial SPMs (Scanning Probe Microscopes) and AFMs (Atomic Force Microscopes). The Arrow AFM probe consists of an AFM probe support chip with an AFM cantilever which has a tetrahedral AFM tip at its triangular free end.
The Arrow AFM probe is entirely made of monolithic, highly doped silicon.
The unique Arrow™ shape of the AFM cantilever with the AFM tip always placed at the very end of the AFM cantilever allows easy positioning of the AFM tip on the area of interest.
The Arrow AFM probes are available for non-contact mode, contact mode and force modulation mode imaging and are also available with a conductive platinum iridum coating. Furthermore the Arrow™ AFM probe series also includes a range of tipless AFM cantilevers and AFM cantilever arrays as well as dedicated ultra-high frequency Arrow AFM probes for high speed AFM.
To find out more about the different variations please have a look at:
You can also find various application examples for the Arrow AFM probes in the NanoWorld blog. For a selection of these articles just click on the “Arrow AFM probes” tag on the bottom of this blog entry.
Quantifying the adaptive mechanical behavior of living cells is essential for the understanding of their inner working and function.*
In their article “Simultaneous Quantification of the Interplay Between Molecular Turnover and Cell Mechanics by AFM–FRAP” Mark Skamrahl, Huw Colin‐York, Liliana Barbieri and Marco Fritzsche use a combination of atomic force microscopy and fluorescence recovery after photobleaching is introduced which offers simultaneous quantification and direct correlation of molecule kinetics and mechanics in living cells.*
Simultaneous quantification of the relationship between molecule kinetics and cell mechanics may thus open up unprecedented insights into adaptive mechanobiological mechanisms of cells.*
For the AFM nanoindentation tests described in their publication the authors used NanoWorld Arrow-TL2 tipless cantilevers that were functionalized with a polystyrene bead with 5 µm radius.*
Figure 1 a from “Simultaneous Quantification of the Interplay Between Molecular Turnover and Cell Mechanics by AFM–FRAP” by M. Skamrahl et al.: Establishment and calibration of the optomechanical AFM–FRAP platform. a) Schematic of the AFM–FRAP setup illustrating the experimental power of simultaneous quantification of molecule kinetics and cell mechanics
*Mark Skamrahl, Huw Colin‐York, Liliana Barbieri, Marco Fritzsche Simultaneous Quantification of the Interplay Between Molecular Turnover and Cell Mechanics by AFM–FRAP Small 2019, 1902202 DOI: https://doi.org/10.1002/smll.201902202
Open
Access: The article « Simultaneous Quantification of the Interplay
Between Molecular Turnover and Cell Mechanics by AFM–FRAP » by Mark Skamrahl,
Huw Colin‐York, Liliana Barbieri
and
Marco Fritzsche is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The images or other thirdparty
material in this article are included in the article’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons license and your
intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder. To
view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
“Motile cells require reversible adhesion to solid surfaces to accomplish force transmission upon locomotion. In contrast to mammalian cells, Dictyostelium discoideum ( a soil dwelling amoeba) cells do not express integrins forming focal adhesions but are believed to rely on more generic interaction forces that guarantee a larger flexibility; even the ability to swim has been described for Dictyostelium discoideum (D.d.).”*
In order to understand the origin of D.d. adhesion, Nadine Kamprad, Hannes Witt, Marcel Schröder, Christian Titus Kreis, Oliver Bäumchen, Andreas Janshoff and Marco Tarantola describe in their publication “Adhesion strategies of Dictyostelium discoideum – a force spectroscopy study”* how they realized and modified a variety of conditions for the amoeba comprising the absence and presence of the specific adhesion protein Substrate Adhesion A (sadA), glycolytic degradation, ionic strength, surface hydrophobicity and strength of van der Waals interactions by generating tailored model substrates. By employing AFM-based single cell force spectroscopy (using NanoWorld Arrow-TL2 tipless cantilevers) they could show that experimental force curves upon retraction exhibit two regimes described in detail in the article cited above. The study describes a versatile mechanism that allows the cells to adhere to a large variety of natural surfaces under various conditions.
Fig. 2 A from “Adhesion strategies of Dictyostelium discoideum – a force spectroscopy study” by N. Kamprad et al.: Cell parametrization: β, angle between the normal on the cell membrane and the cell axis; R1, contact radius between the cell and substrate; R0, equatorial cell radius; R2, contact radius between the cell and cantilever, ϕ1 contact angle towards the substrate; ϕ2, contact angle between the cell and cantilever, in the background is a section of the confocal image in B. B: morphology of the carA-1-GFP labelled D.d. cell attached to the cantilever subjected to a pulling force of 0.2 nN.
*Nadine Kamprad, Hannes Witt, Marcel Schröder, Christian Titus Kreis, Oliver Bäumchen, Andreas Janshoff, Marco Tarantola Adhesion strategies of Dictyostelium discoideum – a force spectroscopy study Nanoscale, 2018, 10, 22504-22519
DOI: 10.1039/C8NR07107A
Open Access The article “Adhesion strategies of Dictyostelium discoideum – a force spectroscopy study” by Nadine Kamprad, Hannes Witt, Marcel Schröder, Christian Titus Kreis, Oliver Bäumchen, Andreas Janshoff and Marco Tarantola is licensed under a Creative Commons Attribution 3.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/.