Simultaneous Quantification of the Interplay Between Molecular Turnover and Cell Mechanics by AFM–FRAP

Quantifying the adaptive mechanical behavior of living cells is essential for the understanding of their inner working and function.*

In their article “Simultaneous Quantification of the Interplay Between Molecular Turnover and Cell Mechanics by AFM–FRAP” Mark Skamrahl, Huw Colin‐York, Liliana Barbieri and Marco Fritzsche use a combination of atomic force microscopy and fluorescence recovery after photobleaching is introduced which offers simultaneous quantification and direct correlation of molecule kinetics and mechanics in living cells.*

Simultaneous quantification of the relationship between molecule kinetics and cell mechanics may thus open up unprecedented insights into adaptive mechanobiological mechanisms of cells.*

For the AFM nanoindentation tests described in their publication the authors used NanoWorld Arrow-TL2 tipless cantilevers that were functionalized with a polystyrene bead with 5 µm radius.*

 Figure 1 a from “Simultaneous Quantification of the Interplay Between Molecular Turnover and Cell Mechanics by AFM–FRAP” by M. Skamrahl et al.: 
 Establishment and calibration of the optomechanical AFM–FRAP platform. a) Schematic of the AFM–FRAP setup illustrating the experimental power of simultaneous quantification of molecule kinetics and cell mechanics
Figure 1 a from “Simultaneous Quantification of the Interplay Between Molecular Turnover and Cell Mechanics by AFM–FRAP” by M. Skamrahl et al.:
Establishment and calibration of the optomechanical AFM–FRAP platform. a) Schematic of the AFM–FRAP setup illustrating the experimental power of simultaneous quantification of molecule kinetics and cell mechanics

*Mark Skamrahl, Huw Colin‐York, Liliana Barbieri, Marco Fritzsche
Simultaneous Quantification of the Interplay Between Molecular Turnover and Cell Mechanics by AFM–FRAP
Small 2019, 1902202
DOI: https://doi.org/10.1002/smll.201902202

Please follow this external link to the full article https://onlinelibrary.wiley.com/doi/full/10.1002/smll.201902202

Open Access: The article « Simultaneous Quantification of the Interplay Between Molecular Turnover and Cell Mechanics by AFM–FRAP » by Mark Skamrahl, Huw Colin‐York, Liliana Barbieri and Marco Fritzsche is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other thirdparty material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Vertical Light Sheet Enhanced Side-View Imaging for AFM Cell Mechanics Studies

Atomic Force Microscopy is a powerful tool for evaluating cell mechanics.
In the recent article “Vertical Light Sheet Enhanced Side-View Imaging for AFM Cell Mechanics Studies” by Kellie Beicker, E. Timothy O’Brien III, Michael R. Falvo, Richard Superfine published in Nature Scientific Reports, the authors combine sideways imaging and a vertical light sheet illumination system integrated with AFM to achieve their results.

5 µm polystyrene beads attached to NanoWorld Arrow-TL1 tipless AFM probes were used.

igure 5 from Vertical Light Sheet Enhanced Side-View Imaging for AFM Cell Mechanics Studies: Membrane and nuclear displacements observed in response to force-rupture events between the AFM-tip and cell membrane. (a) Retraction portion of force-indentation curve with important points (A-G) identified. A, the point of zero force application to the cell, B-F, force-rupture peaks, and G, after bead releases from cell. (b) A closer examination of peaks E and F with sub-peaks of the E rupture event identified. No point is shown for E1 because this is the frame immediately following Peak E0. Inset indicates regions where displacement is measured between points E and F highlighted in green. These regions were determined through difference imaging using frames taken at E and F. (c) Regions of cell displacements determined through difference imaging highlighted in green for the sub-peaks indicated in (b). Yellow dashed lines indicate outline of AFM mounted bead. Scale bars = 5 um. NanoWorld Arrow-TL1 tipless AFM cantilevers were used.
Figure 5 from Beicker et. al Vertical Light Sheet Enhanced Side-View Imaging for AFM Cell Mechanics Studies: Membrane and nuclear displacements observed in response to force-rupture events between the AFM-tip and cell membrane. (a) Retraction portion of force-indentation curve with important points (A-G) identified. A, the point of zero force application to the cell, B-F, force-rupture peaks, and G, after bead releases from cell. (b) A closer examination of peaks E and F with sub-peaks of the E rupture event identified. No point is shown for E1 because this is the frame immediately following Peak E0. Inset indicates regions where displacement is measured between points E and F highlighted in green. These regions were determined through difference imaging using frames taken at E and F. (c) Regions of cell displacements determined through difference imaging highlighted in green for the sub-peaks indicated in (b). Yellow dashed lines indicate outline of AFM mounted bead. Scale bars = 5 um.

Kellie Beicker, E. Timothy O’Brien III, Michael R. Falvo, Richard Superfine
Vertical Light Sheet Enhanced Side-View Imaging for AFM Cell Mechanics
Studies
Nature Scientific Reports, volume 8, Article number: 1504 (2018)
DOI: https://doi.org/10.1038/s41598-018-19791-3

For the full article please follow this external link: https://rdcu.be/59FM

The article Beicker et. al, Vertical Light Sheet Enhanced Side-View Imaging for AFM Cell Mechanics Studies is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.