Type: Arrow™ TL1Au

Special Application AFM Cantilevers

Logo
Cantilever Data Value Range*
Resonance Frequency 6 kHz 3 - 14 kHz
Force Constant 0.03 N/m 0.004 - 0.54 N/m
Length 500 µm 495 - 505 µm
Mean Width 100 µm 95 - 105 µm
Thickness 1 µm 0.5 - 2.5 µm
ARROW-TL1

ARROW-TL1

Product Description

NanoWorld® Arrow™ TL1Au probes are tipless AFM cantilevers for special applications. They can for example be used for attaching spheres and other objects to the free end of the AFM cantilever, or for functionalizing and sensing applications.

All SPM and AFM probes of the Arrow™ series are made from monolithic silicon which is highly doped to dissipate static charge and are chemically inert. The TL1Au probes feature one rectangular AFM cantilever with a triangular free end.

The Arrow™ TL1Au probes feature a sample facing side gold coating. They are optionally available without a coating (Arrow™ TL1).

Tip shape: Tipless

Coating: Gold on Sample Facing Side

Gold Coating

The gold coating consists of a thin gold layer deposited on the sample facing side of the AFM cantilevers. As the coating is almost stress-free the bending of the AFM cantilever due to stress is less than 2 degrees.

Order Codes

Order Code Quantity Data Sheet
ARROW-TL1Au-50 50 Nominal values

NanoWorld® Arrow™ TL - Tipless AFM Cantilevers and AFM Cantilever Arrays Screencast

Subscribe to NanoWorld® Youtube Channel

Bruker® is a trademark of Bruker Corporation

Scientific publications mentioning use of this AFM probe


Ma Q, Segal EX, Montegut MA, Madhavan SR, Jussila AR, Reynolds C, Wyetzner RH, Gregory M, Ertugral E, Kothapalli C, Atit RP
Wnt Activation in Mature Dermal Adipocytes Leads to Lipodystrophy and Skin Fibrosis via ATGL‐Dependent Lipolysis
The FASEB Journal. 2025 Jul 9;39(13):e70830
DOI: https://doi.org/10.1096/fj.202501380R


Agarwal DK, Lucci TJ, Jung JK, Samuel AG, Shekhawat GS, Gaillard JF, Lucks JB, Dravid VP
Ultrasensitive Water Contaminant Detection with Transcription Factor Interfaced Microcantilevers
ACS nano. 2025 Feb 24;19(9):9096-106
DOI: https://doi.org/10.1021/acsnano.4c17598


Yamamoto K, Ichbiah S, Perez M, Borrego-Pinto J, Delbary F, Goehring N, Turlier H, Charras G
Spatiotemporal mapping of the contractile and adhesive forces sculpting early C. elegans embryos
bioRxiv. 2023 Mar 9:2023-03
DOI: https://doi.org/10.1101/2023.03.07.531437


Pogoda K, Cieśluk M, Deptuła P, Tokajuk G, Piktel E, Król G, Reszeć J, Bucki R
Inhomogeneity of stiffness and density of the extracellular matrix within the leukoplakia of human oral mucosa as potential physicochemical factors leading to carcinogenesis
Translational Oncology. 2021 Jul 1;14(7):101105
DOI: https://doi.org/10.1016/j.tranon.2021.101105


Khalilgharibi N, Fouchard J, Asadipour N, Barrientos R, Duda M, Bonfanti A, Yonis A, Harris A, Mosaffa P, Fujita Y, Kabla A
Stress relaxation in epithelial monolayers is controlled by the actomyosin cortex
Nature physics. 2019 Aug;15(8):839-47
DOI: https://doi.org/10.1038/s41567-019-0516-6


Fabris G, Lucantonio A, Hampe N, Noetzel E, Hoffmann B, DeSimone A, Merkel R
Nanoscale topography and poroelastic properties of model tissue breast gland basement membranes
Biophysical journal. 2018 Nov 6;115(9):1770-82
DOI: https://doi.org/10.1016/j.bpj.2018.09.020 


Vega SL, Kwon MY, Song KH, Wang C, Mauck RL, Han L, Burdick JA
Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments
Nature communications. 2018 Feb 9;9(1):614
DOI: https://doi.org/10.1038/s41467-018-03021-5


Moch M, Windoffer R, Schwarz N, Pohl R, Omenzetter A, Schnakenberg U, Herb F, Chaisaowong K, Merhof D, Ramms L, Fabris G
Effects of plectin depletion on keratin network dynamics and organization
PloS one. 2016 Mar 23;11(3):e0149106
DOI: https://doi.org/10.1371/journal.pone.0149106


Gorelkin PV, Erofeev AS, Kiselev GA, Kolesov DV, Dubrovin EV, Yaminsky IV
Synthetic sialylglycopolymer receptor for virus detection using cantilever-based sensors
Analyst. 2015;140(17):6131-7
DOI: https://doi.org/10.1039/C5AN01102G


Stupin VA, Silina EV, Kolesov DV, Yaminsky IV, Shalygin VS
Development of a biosensor for the prediction and early detection of cardiovascular diseases based on saliva composition analysis
 Biosci Biotechnol Res Asia. 2015;2(3):1913-22
DOI: http://dx.doi.org/10.13005/bbra/1857


Gorelkin PV, Erofeev AS, Kiselev GA, Kolesov DV, Gambaryan AS, Yaminsky IV, Lee JS, Lee C, Kim GS, Song KH, Han J
Cantilever sensors based on sialylglycopolymer virus receptor with different readout systems
In2015 IEEE SENSORS 2015 Nov 1 (pp. 1-4). IEEE
DOI: https://doi.org/10.1109/ICSENS.2015.7370321


Gaiko-Shcherbak A, Fabris G, Dreissen G, Merkel R, Hoffmann B, Noetzel E
The acinar cage: basement membranes determine molecule exchange and mechanical stability of human breast cell acini
PLoS One. 2015 Dec 16;10(12):e0145174
DOI: https://doi.org/10.1371/journal.pone.0145174


Tao Y, Boss JM, Moores BA, Degen CL
 Single-crystal diamond nanomechanical resonators with quality factors exceeding one million
Nature communications. 2014 Apr 8;5(1):3638
DOI: https://doi.org/10.1038/ncomms4638


Tokuda Y, Tsubokura D, Ohmichi E, Ohta H
Development of high-sensitivity cantilever-detected ESR measurement using a fiber-optic interferometer
Journal of Magnetics. 2013;18(2):173-7
DOI: https://doi.org/10.4283/JMAG.2013.18.2.173


Liao HS, Huang KY, Chang CS
Cantilever-based mass sensor using high order resonances for liquid environment
In2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) 2011 Jul 3 (pp. 652-655). IEEE
DOI: https://doi.org/10.1109/AIM.2011.6026984


Jambreck JD, Yanev V, Schmitt H, Rommel M, Bauer AJ, Frey L.
Manufacturing, characterization, and application of nanoimprinted metallic probe demonstrators for electrical scanning probe microscopy.
Microelectronic engineering. 2011 Aug 1;88(8):2584-8
DOI: https://doi.org/10.1016/j.mee.2010.12.022


Adamson BD, Sader JE, Bieske EJ
Photoacoustic detection of gases using microcantilevers
Journal of Applied Physics. 2009 Dec 1;106(11)
DOI: https://doi.org/10.1063/1.3271157

For more information contact: info@nanoworld.com

Pointprobe® is a registered trademark of NanoWorld AG

All data are subject to change without notice.

NanoWorld AG
Rue des Saars 10
CH-2000 Neuchâtel,
Switzerland
www.nanoworld.com

For detailed information about our AFM probe product series please see below: