Electrochemically Synthesized Poly(3-hexylthiophene) Nanowires as Photosensitive Neuronal Interfaces

Poly(3-hexylthiophene) (P3HT), a hole-conducting polymer, generates a lot of interest especially because of its excellent optoelectronic properties (such as good electrical conductivity and high extinction coefficient) and good processability, which make this polymer an excellent choice for building organic optoelectronic devices (e.g., organic solar cells). *

P3HT films and nanoparticles have also been used to restore the photosensitivity of retinal neurons. *

For their article “Electrochemically Synthesized Poly(3-hexylthiophene) Nanowires as Photosensitive Neuronal Interfaces” Szilveszter Gáspár, Tiziana Ravasenga, Raluca-Elena Munteanu, Sorin David, Fabio Benfenati, and Elisabetta Colombo investigated the template-assisted electrochemical synthesis of P3HT nanowires doped with tetrabutylammonium hexafluorophosphate (TBAHFP) and their biocompatibility with primary neurons. *

They were able to show that template-assisted electrochemical synthesis can relatively easily turn 3-hexylthiophene (3HT) into longer (e.g., 17 ± 3 µm) or shorter (e.g., 1.5 ± 0.4 µm) P3HT nanowires with an average diameter of 196 ± 55 nm (determined by the used template) and that the nanowires produce measurable photocurrents following illumination. *

The fact that template-assisted electrochemical synthesis combines polymerization, doping, and polymer nanostructuring into one, relatively simple step is the most important advantage of this method. The possibility of easily tuning the length of the produced nanowires represents another important advantage. *

The authors were also able to demonstrate that primary cortical neurons can be grown onto P3HT nanowires drop-casted on a glass substrate without relevant changes in their viability and electrophysiological properties, indicating that P3HT nanowires obtained by template-assisted electrochemical synthesis represent a promising neuronal interface for photostimulation. *

Szilveszter Gáspár  et al. proved the biocompability of the obtained P3HT nanowires upon incubation for different periods with primary neuronal cultures. They demonstrated that their presence does not affect the membrane properties of the neurons or the excitability of the neurons as evaluated by patch-clamp experiments. These results show the potential of the described synthesis methodology to fabricate injectable P3HT-based photosensitive nanowires with high biocompatibility, ultimately paving the way for their exploitation for neuronal photostimulation. *

Atomic Force Microscopy (AFM) was used to characterize P3HT nanowires drop-casted onto glass coverslips. *

The Atomic Force Microscopy images were obtained in air and in intermittent contact-mode using line rates as slow as 0.2 Hz and NanoWorld Pointprobe® NCSTR silicon soft-tapping AFM probes (typical values: resonant frequency 160 kHz, force constant 7.2 N m). The ratio between the set-point amplitude and the free amplitude of the AFM cantilever was set to 0.5–0.6. The obtained AFM images were used to determine both the lengths and the diameters of the nanowires. *

Figure 3 from “Electrochemically Synthesized Poly(3-hexylthiophene) Nanowires as Photosensitive Neuronal Interfaces” by Szilveszter Gáspár et al.: AFM images of “long” P3HT nanowires (A) and of “short” P3HT nanowires (B). NanoWorld Pointprobe NCSTR soft-tapping mode probes were used.
Figure 3 from “Electrochemically Synthesized Poly(3-hexylthiophene) Nanowires as Photosensitive Neuronal Interfaces” by Szilveszter Gáspár et al.:
AFM images of “long” P3HT nanowires (A) and of “short” P3HT nanowires (B).

*Szilveszter Gáspár, Tiziana Ravasenga, Raluca-Elena Munteanu, Sorin David, Fabio Benfenati, and Elisabetta Colombo
Electrochemically Synthesized Poly(3-hexylthiophene) Nanowires as Photosensitive Neuronal Interfaces
Materials 2021, 14(16), 4761, Special Issue Advanced Designs of Materials, Devices and Techniques for Biosensing
DOI: https://doi.org/10.3390/ma14164761 (please follow this external link to read the full article.)

Open Access The article “Electrochemically Synthesized Poly(3-hexylthiophene) Nanowires as Photosensitive Neuronal Interfaces” by Szilveszter Gáspár, Tiziana Ravasenga, Raluca-Elena Munteanu, Sorin David, Fabio Benfenati, and Elisabetta Colombo is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films

Boron doped diamond (BDD) has great potential in electrical, and electrochemical sensing applications. The growth parameters, substrates, and synthesis method play a vital role in the preparation of semiconducting BDD to metallic BDD. Doping of other elements along with boron (B) into diamond demonstrated improved efficacy of B doping and exceptional properties.*

In the article “Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films” Srinivasu Kunuku, Mateusz Ficek, Aleksandra Wieloszynska, Magdalena Tamulewicz-Szwajkowska, Krzysztof Gajewski, Miroslaw Sawczak, Aneta Lewkowicz, Jacek Ryl, Tedor Gotszalk and Robert Bogdanowicz describe how B and nitrogen (N) co-doped diamond has been synthesized on single crystalline diamond (SCD) IIa and SCD Ib substrates in a microwave plasma-assisted chemical vapor deposition process.*

The surface topography of the CVD diamond layers was investigated using atomic force microscopy (AFM), and Kelvin probe force microscopy (KPFM) was employed to measure the contact potential difference (CPD) to calculate the work function of these CVD diamond layers.*

Atomic force microscopy topography depicted the flat and smooth surface with low surface roughness for low B doping, whereas surface features like hillock structures and un-epitaxial diamond crystals with high surface roughness were observed for high B doping concentrations. KPFM measurements revealed that the work function (4.74–4.94 eV) has not varied significantly for CVD diamond synthesized with different B/C concentrations.*

NanoWorld ARROW-EFM conductive platinumirdidium5 coated AFM probes with a typical spring constant of 2.8 N/m and a typical resonant frequency of 75 kHz were used.*

Figure 2 from “Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films “ by Srinivasu Kunuku et al: AFM topography of B/N co-doped CVD diamond on (with fixed N/C = 0.02) SCD IIa; (a) B/C ∼ 2500 ppm (b) B/C ∼ 5000 ppm (c) B/C ∼ 7500 ppm, and KPFM CPD images of B/N co-doped CVD diamond (with fixed N/C = 0.02) on SCD IIa; (d) B/C ∼ 2500 ppm (e) B/C ∼ 5000 ppm (f) B/C ∼ 7500 ppm. NanoWorld Arrow-EFM platinumiridium coated AFM probes were used for the KPFM and surface topography measurements.
Figure 2 from “Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films “ by Srinivasu Kunuku et al:
AFM topography of B/N co-doped CVD diamond on (with fixed N/C = 0.02) SCD IIa; (a) B/C ∼ 2500 ppm (b) B/C ∼ 5000 ppm (c) B/C ∼ 7500 ppm, and KPFM CPD images of B/N co-doped CVD diamond (with fixed N/C = 0.02) on SCD IIa; (d) B/C ∼ 2500 ppm (e) B/C ∼ 5000 ppm (f) B/C ∼ 7500 ppm.

*Srinivasu Kunuku, Mateusz Ficek, Aleksandra Wieloszynska, Magdalena Tamulewicz-Szwajkowska, Krzysztof Gajewski, Miroslaw Sawczak, Aneta Lewkowicz, Jacek Ryl, Tedor Gotszalk and Robert Bogdanowicz
Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films
Nanotechnology (2022),  33 125603
DOI: https://doi.org/10.1088/1361-6528/ac4130

Please follow this external link to read the full article: https://doi.org/10.1088/1361-6528/ac4130

Open Access The article “Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films” by Srinivasu Kunuku, Mateusz Ficek, Aleksandra Wieloszynska, Magdalena Tamulewicz-Szwajkowska, Krzysztof Gajewski, Miroslaw Sawczak, Aneta Lewkowicz, Jacek Ryl, Tedor Gotszalk and Robert Bogdanowicz is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Piezoelectricity of green carp scales

Today is Children’s Day in Japan and many mulit-colored carp-shaped koinobori streamers are fluttering in the wind.

So it is the perfect day to repost and share the publication “Piezoelectricity of green carp scales” by Y. Jiang et al. with you.

Piezoelectricity takes part in multiple important functions and processes in biomaterials often vital to the survival of organisms. In their publication , “Piezoelectricity of green carp scales” Y. Jiang et al. investigate the piezoelectric properties of fish scales of green carp by directly examining their morphology at nanometer levels. From the clear distinctions between the composition of the inner and outer surfaces of the scales that could be found, the authors identified the piezoelectricity to originate from the presence of hydroxyapatite which only exists on the surface of the fish scales.*

koinobori - carp streamers on children's day in Matsumoto Japan
koinobori – carp streamers on children’s day in Matsumoto Japan

These findings reveal a different mechanism of how green carp are sensitive to their surroundings and should be helpful to studies related to the electromechanical properties of marine life and the development of bio-inspired materials. As easily accessible natural polymers, fish scales can be employed as highly sensitive piezoelectric materials in high sensitive and high speed devices as well as be exploited for invasive diagnostics and other biomedical implications.*

For the harmonic responses of both 1st order and 2nd order described in this publication, NanoWorld Arrow-CONTPt AFM probes were used.

FIG. 6 from “Piezoelectricity of green carp scales “ by H. Y. Jiang et al.: First and second harmonic responses of (a) domain I and (b) domain IV. The straight line fitting for the amplitude of first harmonic response of (c) domain I and (d) domain IV by applying a series of bias. NanoWorld Arrow-CONTPt AFM probes were used.
FIG. 6 from “Piezoelectricity of green carp scales “ by H. Y. Jiang et al.: First and second harmonic responses of (a) domain I and (b) domain IV. The straight line fitting for the amplitude of first harmonic response of (c) domain I and (d) domain IV by applying a series of bias.

*Y. Jiang, F. Yen, C. W. Huang, R. B. Mei, and L. Chen
Piezoelectricity of green carp scales
AIP Advances 7, 045215 (2017)
DOI: https://doi.org/10.1063/1.4979503

Please follow this external link to access the full article: https://aip.scitation.org/doi/full/10.1063/1.4979503

Open Access The article “Piezoelectricity of green carp scales” by Y. Jiang, F. Yen, C. W. Huang, R. B. Mei and L. Chen is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.