Tissue mechanics and expression of TROP2 in oral squamous cell carcinoma with varying differentiation

Atomic Force Microscopy ( AFM ) can be utilized to determine the mechanical properties of tumor tissues in different kinds of cancers, for example breast cancer, liver cancer and lung cancer.

Oral squamous cell carcinoma (OSCC) is a common subtype of head and neck and other malignant tumors that occurs in increasing numbers. It is therefore important to learn more about the biological factors connected with the early diagnosis and treatment of OSCC. *

The human trophoblast cell surface antigen 2 (TROP2), which is also called tumor-associated calcium signal transduction-2 (TACSTD-2), is a surface glycoprotein encoded by TACSTD. *

Among the various biochemical mechanisms involved in tumorigenesis, the role of β-catenin has been studied extensively. This has shed light on the biological functions of TROP2 and its use as a prognostic biomarker for OSCC. *

TROP2 regulates tumorigenic properties including cancer cell adhesion, invasion, and migration and is overexpressed in many human cancers. Inhibiting TROP2 expression has shown promise in clinical applications. *

In the article “Tissue mechanics and expression of TROP2 in oral squamous cell carcinoma with varying differentiation” Baoping Zhang, Shuting Gao, Ruiping Li, Yiting Li, Rui Cao, Jingyang Cheng, Yumeng Guo, Errui Wang, Ying Huang and Kailiang Zhang investigate the role of TROP2 in OSCC patients using a combination of biophysical approaches including atomic force microscopy. *

The authors demonstrate the tissue morphology and mechanics of OSCC samples during tumor development using NanoWorld Pointprobe® CONTR AFM probes for the Atomic Force Microscopy described in the article and they believe that their findings will help develop TROP2 in accurately diagnosing OSCC in tumors with different grades of differentiation. *

Figure 5 from Baoping Zhang et al. “Tissue mechanics and expression of TROP2 in oral squamous cell carcinoma with varying differentiation”:
Surface morphology of OSCC tissue sections via AFM detection, irregular morphology appeared in the low differentiation
NanoWorld Pointprobe CONTR AFM probes were used for the Atomic Force Microscopy
Figure 5 from Baoping Zhang et al. “Tissue mechanics and expression of TROP2 in oral squamous cell carcinoma with varying differentiation”:
Surface morphology of OSCC tissue sections via AFM detection, irregular morphology appeared in the low differentiation

*Baoping Zhang, Shuting Gao, Ruiping Li, Yiting Li, Rui Cao, Jingyang Cheng, Yumeng Guo, Errui Wang, Ying Huang and Kailiang Zhang
Tissue mechanics and expression of TROP2 in oral squamous cell carcinoma with varying differentiation
BMC Cancer volume 20, Article number: 815 (2020)
DOI: https://doi.org/10.1186/s12885-020-07257-7

Please follow this external link to read the whole article: https://rdcu.be/cfC9G

Open Access : The article “Tissue mechanics and expression of TROP2 in oral squamous cell carcinoma with varying differentiation” by Baoping Zhang, Shuting Gao, Ruiping Li, Yiting Li, Rui Cao, Jingyang Cheng, Yumeng Guo, Errui Wang, Ying Huang and Kailiang Zhang is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.

Rapid changes in tissue mechanics regulate cell behaviour in the developing embryonic brain

In their short report “Rapid changes in tissue mechanics regulate cell behaviour in the developing embryonic brain” published in January 2019, Amelia J Thompson, Eva K Pillai, Ivan B Dimov, Sarah K Foster, Christine E Holt, and Kristian Franze describe how they used time-lapse in vivo atomic force microscopy (tiv-AFM), a method that combines sensitive upright epi-fluorescence imaging of opaque samples, with iterated AFM indentation measurements of in vivo tissue at cellular resolution and at a time scale of tens of minutes, in order to enable time-resolved measurements of developmental tissue mechanics.*

The technique developed by Thompson, Pillai et al. is a useful tool that can help elucidate how variations in stiffness control the brain wiring process. It could also be used to look into how other developmental or regenerative processes, such as the way neurons reconnect after injuries to thebrain or spinal cord, may be regulated by mechanical tissue properties.*

NanoWorld Arrow-TL1 tipless cantilevers were used for the AFM-based stiffness measurements. (Monodisperse spherical polystyrene beads were glued to the cantilever ends as probes.)

NanoWorld Arrow-TL1 tipless cantilever for atomic force microscopy
NanoWorld Arrow-TL1 tipless AFM cantilever

*Amelia J Thompson, Eva K Pillai, Ivan B Dimov, Sarah K Foster, Christine E Holt, Kristian Franze
Rapid changes in tissue mechanics regulate cell behaviour in the developing embryonic brain
eLife 2019; 8:e39356
DOI: https://doi.org/10.7554/eLife.39356

Please follow this external link to the full article: https://cdn.elifesciences.org/articles/39356/elife-39356-v1.pdf

Open Access: The article « Rapid changes in tissue mechanics regulate cell behaviour in the developing embryonic brain » by Amelia J Thompson et al. is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.