Flexible 3D Electrodes of Free-Standing TiN Nanotube Arrays Grown by Atomic Layer Deposition with a Ti Interlayer as an Adhesion Promoter

Nanostructured electrodes and their flexible integrated systems have great potential for many applications, including electrochemical energy storage, electrocatalysis and solid-state memory devices, given their ability to improve faradaic reaction sites by large surface area. Although many processing techniques have been employed to fabricate nanostructured electrodes on to flexible substrates, these present limitations in terms of achieving flexible electrodes with high mechanical stability.*

In the study “Flexible 3D Electrodes of Free-Standing TiN Nanotube Arrays Grown by Atomic Layer Deposition with a Ti Interlayer as an Adhesion Promoter” by Seokjung Yun, Sang-Joon Kim, Jaesung Youn, Hoon Kim, Jeongjae Ryu, Changdeuck Bae, Kwangsoo No and Seungbum Hong, the adhesion, mechanical properties and flexibility of TiN nanotube arrays on a Pt substrate were improved using a Ti interlayer. Highly ordered and well aligned TiN nanotube arrays were fabricated on a Pt substrate using a template-assisted method with an anodic aluminum oxide (AAO) template and atomic layer deposition (ALD) system.*

The authors show that with the use of a Ti interlayer between the TiN nanotube arrays and Pt substrate, the TiN nanotube arrays could perfectly attach to the Pt substrate without delamination and faceted phenomena. Furthermore, the I-V curve measurements confirmed that the electric contact between the TiN nanotube arrays and substrate for use as an electrode was excellent, and its flexibility was also good for use in flexible electronic devices. Future efforts will be directed toward the fabrication of embedded electrodes in flexible plastic substrates by employing the concepts demonstrated in this study.*

The presented strategy provides a new class of nanostructured 3D electrodes to overcome critical mechanical stability, thus providing a great potential platform for application in a flexible integrated device.*

Topography and transport properties were investigated using a conductive atomic force microscope with NanoWorld Pointprobe® EFM AFM probes ( Pt-coated conductive AFM tips).*

Figure 5 from “Flexible 3D Electrodes of Free-Standing TiN Nanotube Arrays Grown by Atomic Layer Deposition with a Ti Interlayer as an Adhesion Promoter” by Seokjung Yun et al.:
Analysis of TiN NTs/ Ti / Pt samples (a) XRD, (b) schematic of C-AFM setup, (c) AFM height image, and (d) local I-V curve by C-AFM.

*Seokjung Yun, Sang-Joon Kim, Jaesung Youn, Hoon Kim, Jeongjae Ryu, Changdeuck Bae, Kwangsoo No and Seungbum Hong
Flexible 3D Electrodes of Free-Standing TiN Nanotube Arrays Grown by Atomic Layer Deposition with a Ti Interlayer as an Adhesion Promoter
Nanomaterials 2020, 10, 409
DOI: 10.3390/nano10030409

Please follow this external link for access to the full article: https://doi.org/10.3390/nano10030409

Open Access The article “Flexible 3D Electrodes of Free-Standing TiN Nanotube Arrays Grown by Atomic Layer Deposition with a Ti Interlayer as an Adhesion Promoter“ by Seokjung Yun, Sang-Joon Kim, Jaesung Youn, Hoon Kim, Jeongjae Ryu, Changdeuck Bae, Kwangsoo No and Seungbum Hong is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Flexible Robust and High‐Density FeRAM from Array of Organic Ferroelectric Nano‐Lamellae by Self‐Assembly

Ferroelectric memories are endowed with high data storage density by nanostructure designing, while the robustness is also impaired. For organic ferroelectrics favored by flexible memories, low Curie transition temperature limits their thermal stability.*

In their article “Flexible Robust and High‐Density FeRAM from Array of Organic Ferroelectric Nano‐Lamellae by Self‐Assembly “ Mengfan Guo, Jianyong Jiang, Jianfeng Qian, Chen Liu, Jing Ma, Ce‐Wen Nan and Yang Shen demonstrate that a ferroelectric random access memory ( FeRAM ) with high thermal stability and data storage density of ≈60 GB inch−2 could be achieved from an array of edge‐on nano‐lamellae by low‐temperature self‐assembly of P(VDF‐TrFE).*

The self‐assembled P(VDF‐TrFE) described in the article exhibits high storage density of 60 GB inch−2 as a prototype of flexible FeRAM. The authors experimentally determine the self‐assembled FeRAM stored data more robustly, with temperature endurance enhanced over 10 °C and reliable thermal cycling ability. The article shows a novel path to address the thermal stability issues in organic FeRAMs and presents a detailed analysis about the origin of enhanced performance in aligned P(VDF‐TrFE). *

NanoWorld Arrow-CONTPt AFM probes with a conducting Pt/Ir coating were used for the Piezoresponse Force Microscopy ( PFM ) measurements described in this article.

Figure 4 from “Flexible Robust and High‐Density FeRAM from Array of Organic Ferroelectric Nano‐Lamellae by Self‐Assembly” by Mengfan Guo et al.:
Enhanced thermal stability in SA P(VDF‐TrFE). a–c) PFM images of data stored in self‐assembled film at a) 25 °C and b) 90 °C, as well as c) numeric figure of residual area of reversal domains as a function of elevated temperature in a SA film (blue) and a NSA film (red). d) Numeric figure of residual area of reversal domains as a function of thermal cycles in a SA film (blue) and a NSA film (red). Scale bars: 200 nm.

*Mengfan Guo, Jianyong Jiang, Jianfeng Qian, Chen Liu, Jing Ma, Ce‐Wen Nan, Yang Shen
Flexible Robust and High‐Density FeRAM from Array of Organic Ferroelectric Nano‐Lamellae by Self‐Assembly
Advanced Science, Volume6, Issue6, March 20, 2019, 1801931
DOI: https://doi.org/10.1002/advs.201801931

Please follow this external link to read the full article: https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201801931

Open Access: The article « Flexible Robust and High‐Density FeRAM from Array of Organic Ferroelectric Nano‐Lamellae by Self‐Assembly » by Mengfan Guo, Jianyong Jiang, Jianfeng Qian, Chen Liu, Jing Ma, Ce‐Wen Nan and Yang Shen is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Launching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas

Launching and manipulation of polaritons in van der Waals materials offers novel opportunities for applications such as field-enhanced molecular spectroscopy and photodetection.*

Particularly, the highly confined hyperbolic phonon polaritons (HPhPs) in h-BN slabs attract growing interest for their capability of guiding light at the nanoscale. An efficient coupling between free space photons and HPhPs is, however, hampered by their large momentum mismatch.*

In the article “Launching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas” P. Pons-Valencia, F. J. Alfaro-Mozaz, M. M. Wiecha, V. Biolek, I. Dolado, S. Vélez,P. Li, P. Alonso-González, F. Casanova, L. E. Hueso, L. Martín-Moreno, R. Hillenbrand and A. Y. Nikitin show that resonant metallic antennas can efficiently launch HPhPs in thin h-BN slabs. Despite the strong hybridization of HPhPs in the h-BN slab and Fabry-Pérot plasmonic resonances in the metal antenna, the efficiency of launching propagating HPhPs in h-BN by resonant antennas exceeds significantly that of the non-resonant ones.

Their results provide fundamental insights into the launching of HPhPs in thin polar slabs by resonant plasmonic antennas, which will be crucial for phonon-polariton based nanophotonic devices.*

A commercial s-SNOM setup in which the oscillating (at a frequency Ω≅270kHz) metal-coated (Pt/Ir) AFM tip (NanoWorld ARROW-NCPt) was illuminated by p-polarized mid-IR radiation, was used.*

 Figure 4 from “Launching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas” by P. Pns-Valencia et al. : 
 Near-field imaging of the HPhPs launched by the gold antenna. a Schematics of the s-SNOM setup. b Illustration of antenna launching of HPhPs. The spatial distribution of the near-field (shown by the red and blue colors) is adapted from the simulation of Re(Ez). c Topography of the antenna. d Simulated near-field distribution, |E(x, y)|, created by the rod antenna on CaF2 (the field is taken at the top surface of the antenna). Scale bars in c, d are 0.5 μm. e, h Experimental near-field images. f, i Simulated near-field distribution |Ez(x, y)| (taken 150 nm away from the h-BN slab). g, j Simulated near-field distribution |Ez(z, y)| taken in the cross-section plane along the center of the rod antenna. In e–g ω = 1430 cm−1, while in h–j ω = 1515 cm−1. The scale bars in e–i are 2 μm and in g, j are 0.1 μm (vertical) and 0.5 μm (horizontal). The length of the antenna in all panels is L = 2.29 μm

Figure 4 from “Launching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas” by P. Pons-Valencia et al. :
Near-field imaging of the HPhPs launched by the gold antenna. a Schematics of the s-SNOM setup. b Illustration of antenna launching of HPhPs. The spatial distribution of the near-field (shown by the red and blue colors) is adapted from the simulation of Re(Ez). c Topography of the antenna. d Simulated near-field distribution, |E(x, y)|, created by the rod antenna on CaF2 (the field is taken at the top surface of the antenna). Scale bars in c, d are 0.5 μm. e, h Experimental near-field images. f, i Simulated near-field distribution |Ez(x, y)| (taken 150 nm away from the h-BN slab). g, j Simulated near-field distribution |Ez(z, y)| taken in the cross-section plane along the center of the rod antenna. In e–g ω = 1430 cm−1, while in h–j ω = 1515 cm−1. The scale bars in e–i are 2 μm and in g, j are 0.1 μm (vertical) and 0.5 μm (horizontal). The length of the antenna in all panels is L = 2.29 μm

*P. Pons-Valencia, F. J. Alfaro-Mozaz, M. M. Wiecha, V. Biolek, I. Dolado, S. Vélez,P. Li, P. Alonso-González, F. Casanova, L. E. Hueso, L. Martín-Moreno, R. Hillenbrand, A. Y. Nikitin
Launching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas
Nature Communications 2019; 10: 3242
doi: 10.1038/s41467-019-11143-7

Please follow this external link to read the full article: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6642108/

Open Access: The paper « Launching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas » by P. Pons-Valencia, F. J. Alfaro-Mozaz, M. M. Wiecha, V. Biolek, I. Dolado, S. Vélez,P. Li, P. Alonso-González, F. Casanova, L. E. Hueso, L. Martín-Moreno, R. Hillenbrand and A. Y. Nikitin is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.