Intravascular adhesion and recruitment of neutrophils in response to CXCL1 depends on their TRPC6 channels

Representing a central element of the innate immune system, neutrophils are recruited from the blood stream to a site of inflammation. The recruitment process follows a well-defined sequence of events including adhesion to the blood vessel walls, migration, and chemotaxis to reach the inflammatory focus. A common feature of the underlying signalling pathways is the utilization of Ca2+ ions as intracellular second messengers. However, the required Ca2+ influx channels are not yet fully characterized.*

In the article “Intravascular adhesion and recruitment of neutrophils in response to CXCL1 depends on their TRPC6 channels” Otto Lindemann, Jan Rossaint, Karolina Najder, Sandra Schimmelpfennig, Verena Hofschröer, Mike Wälte, Benedikt Fels, Hans Oberleithner, Alexander Zarbock and Albrecht Schwab report a novel role for TRPC6, a member of the transient receptor potential (TRPC) channel family, in the CXCL1-dependent recruitment of murine neutrophil granulocytes.*

The authors describe how they tested whether TRPC6 channels are central elements of the signalling cascade underlying CXCR2-mediated neutrophil recruitment. They combined intravital microscopy, single-cell force spectroscopy with atomic force microscopy, Ca2+ imaging, and microfluidic flow chamber assays to investigate the role of TRPC6 channels in murine neutrophils for their recruitment in renal ischemia-reperfusion and cremaster models as well as in in vitro assays.*

The study reveals that TRPC6 channels in neutrophils are crucial signalling modules in their recruitment from the blood stream in response to CXCL1.*

The single-cell force spectroscopy experiments were performed by using atomic force microscopy (AFM) with NanoWorld Arrow-TL1 tipless cantilevers which were incubated prior to experiments for 30 min in Cell-Tak to make the AFM cantilever sticky for neutrophils.*

NanoWorld Arrow-TL1 Tipless AFM cantilever, single cantilever beam on a silicon support chip
NanoWorld Arrow-TL1
Tipless cantilever,
single cantilever beam on a silicon support chip

*Otto Lindemann, Jan Rossaint, Karolina Najder, Sandra Schimmelpfennig, Verena Hofschröer, Mike Wälte, Benedikt Fels, Hans Oberleithner, Alexander Zarbock and Albrecht Schwab
Intravascular adhesion and recruitment of neutrophils in response to CXCL1 depends on their TRPC6 channels
Journal of Molecular Medicine volume 98, pages349–360(2020)
DOI: https://doi.org/10.1007/s00109-020-01872-4

Please follow this external link to read the full article: https://link.springer.com/article/10.1007/s00109-020-01872-4

Open Access The article “ Intravascular adhesion and recruitment of neutrophils in response to CXCL1 depends on their TRPC6 channels “ by Otto Lindemann, Jan Rossaint, Karolina Najder, Sandra Schimmelpfennig, Verena Hofschröer, Mike Wälte, Benedikt Fels, Hans Oberleithner, Alexander Zarbock and Albrecht Schwab is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Simultaneous Quantification of the Interplay Between Molecular Turnover and Cell Mechanics by AFM–FRAP

Quantifying the adaptive mechanical behavior of living cells is essential for the understanding of their inner working and function.*

In their article “Simultaneous Quantification of the Interplay Between Molecular Turnover and Cell Mechanics by AFM–FRAP” Mark Skamrahl, Huw Colin‐York, Liliana Barbieri and Marco Fritzsche use a combination of atomic force microscopy and fluorescence recovery after photobleaching is introduced which offers simultaneous quantification and direct correlation of molecule kinetics and mechanics in living cells.*

Simultaneous quantification of the relationship between molecule kinetics and cell mechanics may thus open up unprecedented insights into adaptive mechanobiological mechanisms of cells.*

For the AFM nanoindentation tests described in their publication the authors used NanoWorld Arrow-TL2 tipless cantilevers that were functionalized with a polystyrene bead with 5 µm radius.*

 Figure 1 a from “Simultaneous Quantification of the Interplay Between Molecular Turnover and Cell Mechanics by AFM–FRAP” by M. Skamrahl et al.: 
 Establishment and calibration of the optomechanical AFM–FRAP platform. a) Schematic of the AFM–FRAP setup illustrating the experimental power of simultaneous quantification of molecule kinetics and cell mechanics
Figure 1 a from “Simultaneous Quantification of the Interplay Between Molecular Turnover and Cell Mechanics by AFM–FRAP” by M. Skamrahl et al.:
Establishment and calibration of the optomechanical AFM–FRAP platform. a) Schematic of the AFM–FRAP setup illustrating the experimental power of simultaneous quantification of molecule kinetics and cell mechanics

*Mark Skamrahl, Huw Colin‐York, Liliana Barbieri, Marco Fritzsche
Simultaneous Quantification of the Interplay Between Molecular Turnover and Cell Mechanics by AFM–FRAP
Small 2019, 1902202
DOI: https://doi.org/10.1002/smll.201902202

Please follow this external link to the full article https://onlinelibrary.wiley.com/doi/full/10.1002/smll.201902202

Open Access: The article « Simultaneous Quantification of the Interplay Between Molecular Turnover and Cell Mechanics by AFM–FRAP » by Mark Skamrahl, Huw Colin‐York, Liliana Barbieri and Marco Fritzsche is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other thirdparty material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Rapid changes in tissue mechanics regulate cell behaviour in the developing embryonic brain

In their short report “Rapid changes in tissue mechanics regulate cell behaviour in the developing embryonic brain” published in January 2019, Amelia J Thompson, Eva K Pillai, Ivan B Dimov, Sarah K Foster, Christine E Holt, and Kristian Franze describe how they used time-lapse in vivo atomic force microscopy (tiv-AFM), a method that combines sensitive upright epi-fluorescence imaging of opaque samples, with iterated AFM indentation measurements of in vivo tissue at cellular resolution and at a time scale of tens of minutes, in order to enable time-resolved measurements of developmental tissue mechanics.*

The technique developed by Thompson, Pillai et al. is a useful tool that can help elucidate how variations in stiffness control the brain wiring process. It could also be used to look into how other developmental or regenerative processes, such as the way neurons reconnect after injuries to thebrain or spinal cord, may be regulated by mechanical tissue properties.*

NanoWorld Arrow-TL1 tipless cantilevers were used for the AFM-based stiffness measurements. (Monodisperse spherical polystyrene beads were glued to the cantilever ends as probes.)

NanoWorld Arrow-TL1 tipless cantilever for atomic force microscopy
NanoWorld Arrow-TL1 tipless AFM cantilever

*Amelia J Thompson, Eva K Pillai, Ivan B Dimov, Sarah K Foster, Christine E Holt, Kristian Franze
Rapid changes in tissue mechanics regulate cell behaviour in the developing embryonic brain
eLife 2019; 8:e39356
DOI: https://doi.org/10.7554/eLife.39356

Please follow this external link to the full article: https://cdn.elifesciences.org/articles/39356/elife-39356-v1.pdf

Open Access: The article « Rapid changes in tissue mechanics regulate cell behaviour in the developing embryonic brain » by Amelia J Thompson et al. is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.