Flexible Robust and High‐Density FeRAM from Array of Organic Ferroelectric Nano‐Lamellae by Self‐Assembly

Ferroelectric memories are endowed with high data storage density by nanostructure designing, while the robustness is also impaired. For organic ferroelectrics favored by flexible memories, low Curie transition temperature limits their thermal stability.*

In their article “Flexible Robust and High‐Density FeRAM from Array of Organic Ferroelectric Nano‐Lamellae by Self‐Assembly “ Mengfan Guo, Jianyong Jiang, Jianfeng Qian, Chen Liu, Jing Ma, Ce‐Wen Nan and Yang Shen demonstrate that a ferroelectric random access memory ( FeRAM ) with high thermal stability and data storage density of ≈60 GB inch−2 could be achieved from an array of edge‐on nano‐lamellae by low‐temperature self‐assembly of P(VDF‐TrFE).*

The self‐assembled P(VDF‐TrFE) described in the article exhibits high storage density of 60 GB inch−2 as a prototype of flexible FeRAM. The authors experimentally determine the self‐assembled FeRAM stored data more robustly, with temperature endurance enhanced over 10 °C and reliable thermal cycling ability. The article shows a novel path to address the thermal stability issues in organic FeRAMs and presents a detailed analysis about the origin of enhanced performance in aligned P(VDF‐TrFE). *

NanoWorld Arrow-CONTPt AFM probes with a conducting Pt/Ir coating were used for the Piezoresponse Force Microscopy ( PFM ) measurements described in this article.

Figure 4 from “Flexible Robust and High‐Density FeRAM from Array of Organic Ferroelectric Nano‐Lamellae by Self‐Assembly” by Mengfan Guo et al.:
Enhanced thermal stability in SA P(VDF‐TrFE). a–c) PFM images of data stored in self‐assembled film at a) 25 °C and b) 90 °C, as well as c) numeric figure of residual area of reversal domains as a function of elevated temperature in a SA film (blue) and a NSA film (red). d) Numeric figure of residual area of reversal domains as a function of thermal cycles in a SA film (blue) and a NSA film (red). Scale bars: 200 nm.

*Mengfan Guo, Jianyong Jiang, Jianfeng Qian, Chen Liu, Jing Ma, Ce‐Wen Nan, Yang Shen
Flexible Robust and High‐Density FeRAM from Array of Organic Ferroelectric Nano‐Lamellae by Self‐Assembly
Advanced Science, Volume6, Issue6, March 20, 2019, 1801931
DOI: https://doi.org/10.1002/advs.201801931

Please follow this external link to read the full article: https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201801931

Open Access: The article « Flexible Robust and High‐Density FeRAM from Array of Organic Ferroelectric Nano‐Lamellae by Self‐Assembly » by Mengfan Guo, Jianyong Jiang, Jianfeng Qian, Chen Liu, Jing Ma, Ce‐Wen Nan and Yang Shen is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Ferroelectric domains and phase transition of sol-gel processed epitaxial Sm-doped BiFeO3 (001) thin films

Read how Nanoworld Arrow-EFM AFM probes were used in the paper “Ferroelectric domains and phase transition of sol-gel processed epitaxial Sm-doped BiFeO3 (001) thin films” in which the authors Zhen Zhou, Wie Sun, Zhenyu Liao, Shuai Ning, Jing Zhu and Jing-Feng Li:

  • prepared 12% Sm-doped BiFeO3 epitaxial thin films on Nb-doped SrTiO3 (001) substrate via a sol-gel method
  • used PFM (piezoresponse force microscopy) to characterize the in-situ ferroelectric domain evolution from room temperature to 200 °C
  • illustrated a phase transition from ferroelectric to antiferroelectric phase by SS-PFM and found a significant piezoelectric response at the phase boundary

Their work revealed the origin of the high piezoresponse of Sm-doped BiFeO3 thin films at the morphotropic phase boundary (MPB).*

A PtIr-coated NanoWorld Arrow-EFM cantilever with a nominal spring constant of 2.8 N/m and a typical resonant frequency of 75 kHz was used in all imaging modes mentioned in the article.

Figure 3 from “Ferroelectric domains and phase transition of sol-gel processed epitaxial Sm-doped BiFeO3 (001) thin films” by Zhen Zhou et al. : PFM scanning results of the sample at 20 °C, 80 °C, 140 °C and 200 °C, (a)-(d) out-of-plane phase, (e)-(h) out-of-plane amplitude, (i)-(l) in-plane phase, and (m)-(p) in-plane amplitude. NanoWorld Arrow-EFM AFM probes were used in all imaging modes.
Figure 3 from “Ferroelectric domains and phase transition of sol-gel processed epitaxial Sm-doped BiFeO3 (001) thin films” by Zhen Zhou et al. : PFM scanning results of the sample at 20 °C, 80 °C, 140 °C and 200 °C, (a)-(d) out-of-plane phase, (e)-(h) out-of-plane amplitude, (i)-(l) in-plane phase, and (m)-(p) in-plane amplitude.

 
 
 
 
 
 
             
*Zhen Zhou, Wie Sun, Zhenyu Liao, Shuai Ning, Jing Zhu, Jing-Feng Li
Ferroelectric domains and phase transition of sol-gel processed epitaxial Sm-doped BiFeO3 (001) thin films

Journal of Materiomics, Volume 4, Issue 1, March 2018, Pages 27-34
DOI: https://doi.org/10.1016/j.jmat.2017.11.002

Please follow this external link if you would like to read the full article: https://www.sciencedirect.com/science/article/pii/S2352847817300631

Open Access The article “Ferroelectric domains and phase transition of sol-gel processed epitaxial Sm-doped BiFeO3 (001) thin films” by Zhen Zhou, Wie Sun, Zhenyu Liao, Shuai Ning, Jing Zhu and Jing-Feng Li is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

 

Ferroelectric Domain Studies of Patterned (001) BiFeO3 by Angle-Resolved Piezoresponse Force Microscopy

Figure 1 from "Ferroelectric Domain Studies of Patterned (001) BiFeO 3 by Angle- Resolved Piezoresponse Force Microscopy": Patterned mesas are separated from the continuous film by lithography, as shown in the AFM topography image. (b) Schematic drawing of the atomic structure of BFO with angle-resolved polarization models. The Fe (red sphere) atom can be displaced towards twelve possible polarization orientations with respect to its centrosymmetric position. (c) AR-PFM domain map of a 1.2 × 1.2 μm2 area of unpatterned BFO film, corresponding to the black dashed area in (a). (d) The area distribution of each polarization variant according to angle relative to the [100] direction. (e) The average area of stable and meta-stable polarization variants.
Figure 1 from Seungbum Hong et al. “Ferroelectric Domain Studies of
Patterned (001) BiFeO3 by Angle-Resolved Piezoresponse Force Microscopy”:
Patterned mesas are separated from the continuous film by lithography, as shown in the AFM topography image.
(b) Schematic drawing of the atomic structure of BFO with angle-resolved polarization models. The Fe (red sphere) atom can be displaced towards twelve possible polarization orientations with respect to its centrosymmetric position. (c) AR-PFM domain map of a 1.2 × 1.2 μm2 area of unpatterned BFO film, corresponding to the black dashed area in (a). (d) The area distribution of each polarization variant according to angle relative to the [100] direction. (e) The average area of stable and meta-stable polarization variants.
NanoWorld EFM PtIr coated probes were used for the PFM measurements mentioned in this brand new publication on ferroelectric domain imaging of patterned BFO thin films in Scientific Reports.
Congratulations to the authors!
 #afmprobes #atomicforcemicroscopy #afmtips #AFM

Bumsoo Kim, Frank P. Barrows, Yogesh Sharma, Ram S. Katiyar, Charudatta Phatak, Amanda K. Petford-Long, Seokwoo Jeon, Seungbum Hong
Scientific Reports (2018) 8:20, DOI:10.1038/s41598-017-18482-9
For the full article please follow this external link:

 

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/