HS-AFM video of Covid’s Docking Method

Johannes Kepler University in Linz Austria has published a High-Speed Atomic Force Microscopy video of human lectin CLEC4G binding to glycans on a SARS-CoV-2 spike. This video was recorded by Daniel Canena and Peter Hinterdorfer and is, according to the two researchers, the first short film of the active structure the virus uses to attach to cell

Congratulations!

NanoWorld Ultra-Short AFM Cantilevers of the USC-F1.2-k0.15 type were used for the HS-AFM video.

Please follow this external link to the Johannes Keppler University webpage to watch the video: https://www.jku.at/en/news-events/news/detail/news/film-of-covids-docking-method/ or have a look on Youtube

NanoWorld Ultra-Short Cantilevers (USC) for High-Speed AFM (HS-AFM)
NanoWorld Ultra-Short Cantilevers (USC) for High-Speed AFM (HS-AFM)

High-speed atomic force microscopy highlights new molecular mechanism of daptomycin action

The current pandemic is not the only health threat worldwide. Another worry is the increasing antibiotic resistance which increases the fear to run out of effective antibiotics.

This is one of the reasons why antimicrobial peptides (AMPs) are gaining more and more interest.

The lipopeptide Daptomycin ( DAP ) has been therapeutically used as a last resort antibiotic against multidrug-resistant enterococci and staphylococci in the past. Unfortunately, some strains have become resistant to Dap in recent years. There still is a knowledge-gap on the details of Dap activity. It is therefore important to understand the structure-activity relationships of AMPs on membranes in order to develop more antibiotics of this type as a countermeasure to the spread of resistance.*

High Speed Atomic Force Microscopy ( HS-AFM ) makes it possible to observe dynamic biological processes on a molecular level.

In the article “High-speed atomic force microscopy highlights new molecular mechanism of daptomycin action” Francesca Zuttion, Adai Colom, Stefan Matile, Denes Farago, Frédérique Pompeo, Janos Kokavecz, Anne Galinier, James Sturgis and Ignacio Casuso describe how, by using the possibilities offered by high speed atomic force microscopy, they were able to confirm some up until now hypothetical models and additionally detected some previously unknown molecular mechanisms. *

The HS-AFM imaging made it possible for the authors to observe the development of the dynamics of interaction at the molecular-level over several hours. *

They investigated the lipopeptide Daptomycin under infection-like conditions and could confirm Dap oligomerization and the existence of half pores. *

They also mimicked bacterial resistance conditions by increasing the CL-content in the membrane. *

By correlating the results of other research techniques such as FRET, SANS, NMR, CD or electrophysiology techniques with the results they achieved with high speed atomic force microscopy F. Zuttion et al. were able to confirm several, previously, hypothetical models, and detect several unknown molecular mechanisms. *

It is to be hoped that the possibilities offered by HS-AFM imaging will stimulate new models and insight on the structure-activity relationship of membrane-interacting molecules and also open up the possiblity to increase the throughput of screening of molecular candidates considerably. *

NanoWorld USC ( Ultra-Short AFM Cantilevers) of the USC-F1.2-k0.15 type, which are specially designed for the use in high speed atomic force microscopy, were used for the HS-AFM imaging described in the article cited below. These AFM probes have a typical resonance frequency of 1200 kHz and have a wear resistant AFM tip made from high density carbon.

Figure 4 Sub-MIC Dap on POPG at 37 °C. Tens of minutes from “High-speed atomic force microscopy highlights new molecular mechanism of daptomycin action” by Francesca Zuttion et al. NanoWorld Ultra-Short AFM Cantilevers USC-F1.2-k0.15 AFM probes for HS-AFM imaging were used.
Figure 4 Sub-MIC Dap on POPG at 37 °C. Tens of minutes from “High-speed atomic force microscopy highlights new molecular mechanism of daptomycin action” by Francesca Zuttion et al.
Intermediate stages a A new structure appeared: dimples, zones of thinner membrane thickness, whose diameter was in the range 7 ± 2 nm. Most dimples diffuse, but some remained static (colour scale: 3 nm). Movie details: frame rate 97 ms; zoom of a full image of 150 nm × 90 nm and 256 × 160 pixels. b The dimple diffusion consisted of swinging trajectories, implying membrane-mediated dimple-dimple attraction (colour scale: 3 nm). b, right, Energy profile of the interaction of the dimples obtained derived from 120 centre-to-centre distance measurements that contains as the oligomers two energy minima. Movie details: frame rate 83 ms; full image of 150 nm × 150 nm and 256 × 256 pixels. c In some membrane zones, clusters of dimples, reminiscent of cubic phases, developed (colour scale: 4 nm). Movie details: frame rate 74 ms; full image of 90 nm × 60 nm and 256 × 160 pixels. d The clusters of dimples were moderately dynamical in time, with moderate internal rearrangements (colour scale: 4 nm). Movie details: frame rate 74 ms; full image of 25 nm × 16 nm and 256 × 160 pixels. e The other deformation found was elongated-humps on top of the POPG membrane. e, left, An elongated-hump in the proximity of a cluster of dimples (colour scale: 4 nm). e, right, A close-up and a profile of an elongated-hump. Additional images of elongated-humps on Supplementary Fig. 1. Movie details: frame rate 479 ms; zoom of full image of 250 nm × 200 nm and 300 × 256 pixels. f It was observed that the dimples and the elongated-humps fused and gave yield to pores of toroidal structure where a protruding ring surrounds the pore (colour scale: 4 nm). Movie details: frame rate 74 ms; full image of 40 nm × 40 nm and 256 × 160 pixels.

*Francesca Zuttion, Adai Colom, Stefan Matile, Denes Farago, Frédérique Pompeo, Janos Kokavecz, Anne Galinier, James Sturgis and Ignacio Casuso
High-speed atomic force microscopy highlights new molecular mechanism of daptomycin action
Nature Communications volume 11, Article number: 6312 (2020)
DOI: https://doi.org/10.1038/s41467-020-19710-z

Please follow this external link to read the full article: https://rdcu.be/ciaW2

Open Access : The article “High-speed atomic force microscopy highlights new molecular mechanism of daptomycin action” by Francesca Zuttion, Adai Colom, Stefan Matile, Denes Farago, Frédérique Pompeo, Janos Kokavecz, Anne Galinier, James Sturgis and Ignacio Casuso is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.

Carbon nanotube porin diffusion in mixed composition supported lipid bilayers

Lipid membranes play a key role in living systems by providing a structural barrier that separates cellular compartments. Bilayer fluidity in the lateral plane is a key property of lipid membranes, that allows the membrane to have sufficient flexibility to accommodate dynamic stresses, shape changes and rearrangements accompanying the cellular lifecycle.*

In the article “Carbon nanotube porin diffusion in mixed composition supported lipid bilayers” Kylee Sullivan, Yuliang Zhang, Joseph Lopez, Mary Lowe and Aleksandr Noy describe how they used high-speed atomic force microscopy (HS-AFM) and all-atom molecular dynamics (MD) simulations to study the behavior of CNTPs in a mixed lipid membrane consisting of DOPC lipid with a variable percentage of DMPC lipid added to it. HS-AFM data reveal that the CNTPs undergo diffusive motion in the bilayer plane.*

Motion trajectories extracted from the HS-AFM movies indicate that CNTPs exhibit diffusion coefficient values broadly similar to values reported for membrane proteins in supported lipid bilayers. The data also indicate that increasing the percentage of DMPC leads to a marked slowing of CNTP diffusion. MD simulations reveal a CNTP-lipid assembly that diffuses in the membrane and show trends that are consistent with the experimental observations. *

The above-mentioned study confirms that CNTPs mimic the major features of the diffusive movement of biological pores in lipid membranes and shows how the increase in bilayer viscosity leads to a corresponding slowdown in protein motion. It should be possible to extend this approach to studies of other membrane protein dynamics in supported lipid bilayers. The authors note that those studies, however, will need to be mindful of the challenge of unambiguous visualization of the membrane components, especially in systems that incorporate smaller proteins, such as antimicrobial peptides. Another challenge that could complicate these studies would be microscopic phase separation of the lipid matrix that could lead to complicated pore dynamics in the membrane. *

NanoWorld Ultra-Short AFM cantilevers with high-density carbon/diamond-like carbon (HDC/DLC) AFM tips of the USC-F1.2-k0.15 type were used for the high-speed atomic force microscopy described in the article. *

Figure 2 from “Carbon nanotube porin diffusion in mixed composition supported lipid bilayers” by Kylee Sullivan et al.:

CNTP motion in supported lipid bilayers. (a) Representative frames (with times in seconds indicated on each image) from an HS-AFM movie showing a CNTP diffusing in a supported lipid bilayer with 80:20 DOPC-DMPC ratio (see also Supplementary Movie 2). (b) A representative trajectory for CNTP diffusion in the bilayer. The time step between each datapoint is 0.5 s. NanoWorld Ultra-Short AFM Cantilvers USC-F1.2-k0.15 were used for the HS-AFM imaging
Figure 2 a and b from “Carbon nanotube porin diffusion in mixed composition supported lipid bilayers” by Kylee Sullivan et al.:

CNTP motion in supported lipid bilayers. (a) Representative frames (with times in seconds indicated on each image) from an HS-AFM movie showing a CNTP diffusing in a supported lipid bilayer with 80:20 DOPC-DMPC ratio (see also Supplementary Movie 2). (b) A representative trajectory for CNTP diffusion in the bilayer. The time step between each datapoint is 0.5 s.
Please refer to the full article cited below for the full figure.

*Kylee Sullivan, Yuliang Zhang, Joseph Lopez, Mary Lowe and Aleksandr Noy
Carbon nanotube porin diffusion in mixed composition supported lipid bilayers
Nature Scientific Reports volume 10, Article number: 11908 (2020)
DOI: https://doi.org/10.1038/s41598-020-68059-2

Please follow this external link to read the full article: https://rdcu.be/b69wj

Open Access : The article “Carbon nanotube porin diffusion in mixed composition supported lipid bilayers” by Kylee Sullivan, Yuliang Zhang, Joseph Lopez, Mary Lowe and Aleksandr Noy is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.