Direct observation of dynamic interaction between a functional group in a single SBR chain and an inorganic matter surface

In the article  “Direct observation of dynamic interaction between a functional group in a single SBR chain and an inorganic matter surface” Ken-ichi Shinohara and Yuu Makida use atomic force microscopy (AFM) video imaging to closely investigate the behaviour of functionalized and unmodified styrene-butadiene rubber (SBR), as models for tire rubber, on mica surfaces.

“Using AFM video imaging, we tracked the behavior of individual SBR polymer chains on mica surfaces to reveal how polymer modification affects the interaction of SBR with mica surfaces. We measured the diffusion coefficients and spring constants of single SBR polymer chains for the first time, demonstrating that it is possible to parameterize the relationship between the molecular dynamic structure of a polymer and rubber properties of the vulcanized compound.”*

NanoWorld Ultra-Short Cantilevers (USC) for Fast-/High-Speed AFM  ( USC-F1.2-k0.15 ) were used

Figure 3 from “Direct observation of dynamic interaction between a functional group in a single SBR chain and an inorganic matter surface” by Ken-ichi Shinohara & Yuu Makida: (A) Single-molecule imaging of the structure of two isolated polymer chains of carboxyl-functionalized styrene-butadiene rubber (SBR) on mica under n-octylbenzene at 25 ± 1 °C (Movie S5). Snapshot AFM image of a fast-scanning atomic force microscopy (AFM) movie; X: 200 nm, Y: 150 nm, Z: 7.2 nm. Rate: 5.0 fps. (B) A snapshot of all-atom MD simulated structure of a single chain of carboxyl-functionalized SBR (CPK model) in n-octylbenzene as a solvent. Dynamic globular (ball-like) structures were formed partially in a SBR chain. The position of carboxyl group was indicated by an arrow. The backbone was displayed in purple. Solvent molecules are indicated by line model and hydrogen atoms are omitted for simplified to view. NanoWorld USC-F1.2-k0.15 AFM probes were used
Figure 3 from “Direct observation of dynamic interaction between a functional group in a single SBR chain and an inorganic matter surface” by Ken-ichi Shinohara & Yuu Makida: (A) Single-molecule imaging of the structure of two isolated polymer chains of carboxyl-functionalized styrene-butadiene rubber (SBR) on mica under n-octylbenzene at 25 ± 1 °C (Movie S5). Snapshot AFM image of a fast-scanning atomic force microscopy (AFM) movie; X: 200 nm, Y: 150 nm, Z: 7.2 nm. Rate: 5.0 fps. (B) A snapshot of all-atom MD simulated structure of a single chain of carboxyl-functionalized SBR (CPK model) in n-octylbenzene as a solvent. Dynamic globular (ball-like) structures were formed partially in a SBR chain. The position of carboxyl group was indicated by an arrow. The backbone was displayed in purple. Solvent molecules are indicated by line model and hydrogen atoms are omitted for simplified to view.

*Ken-ichi Shinohara & Yuu Makida
Direct observation of dynamic interaction between a functional group in a single SBR chain and an inorganic matter surface
Nature Scientific Reports, volume 8, Article number: 13982 (2018)
DOI: https://doi.org/10.1038/s41598-018-32382-6

For the full article please follow this external link: https://rdcu.be/bbERH

The article “Direct observation of dynamic interaction between a functional group in a single SBR chain and an inorganic matter surface” by Ken-ichi Shinohara & Yuu Makida is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Membrane sculpting by curved DNA origami scaffolds

In the article “Membrane sculpting by curved DNA origami scaffolds” the authors show that “dependent on curvature, membrane affinity and surface density, DNA origami coats can indeed reproduce the activity of membrane-sculpting proteins such as BAR, suggesting exciting perspectives for using them in bottom-up approaches towards minimal biomimetic cellular machineries.”*

The AFM images for this article were taken in high-speed AC mode using NanoWorld Ultra-Short Cantilevers of the USC-F0.3-k0.3 type.

Supplementary Figure 5 b from Membrane sculpting by curved DNA origami scaffolds: Characterization of folded DNA origami nanoscaffolds. ( a ) Assembly of the folded bare origami structures L, Q, H was initially assessed via agarose gel (2%) electrophoresis analysis. Lanes containing marker DNA ladder (1kb) and M13 single - stranded p7249 sc affold (Sc) were also included. ( b ) Structure of folded bare origami L, Q and H was further validated using negative - stain transmission electron microscopy (TEM ; scale bar s : 100 nm ) and atomic force microscopy (AFM ; scale bar s : 200nm ).
Supplementary Figure 5 b from “Membrane sculpting by curved DNA origami scaffolds”:
Characterization of folded DNA origami nanoscaffolds.
b) Structure of folded bare origami L, Q and H was further validated using negative-stain transmission electron microscopy (TEM; scale bars: 100 nm) and atomic force microscopy (AFM; scale bars: 200nm).

*Henri G. Franquelim, Alena Khmelinskaia, Jean-Philippe Sobczak, Hendrik Dietz, Petra Schwille
Membrane sculpting by curved DNA origami scaffolds
Nature Communicationsvolume 9, Article number: 811 (2018)
DOI: https://doi.org/10.1038/s41467-018-03198-9

Please follow this link to the full article: https://rdcu.be/8zZi

Open Access: The article “Membrane sculpting by curved DNA origami scaffolds” by Franquelim et. al is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

We are looking forward to meeting you at MRS FALL in Boston

We are looking forward to meeting you at the NanoAndMore booth no. 610 at the 2017 MRS Fall exhibit from November 28-30, 2017 in Boston.

#F17MRS #AFM #AFMtip #AFMprobe

NanoWorld Ultra-Short-Cantilevers (USC) - AFM tips for video rate atomic force microscopy
NanoWorld Ultra-Short Cantilevers (USC) for High-Speed AFM (HS-AFM)

 

NanoWorld representatives will be present at booth 610 at the 2017 MRS Fall Exhibit
We hope to see you at booth 610 at the 2107 MRS Fall Exhibit