Type: NCHPt

Non-contact / Tapping™ mode - High resonance frequency - PtIr5 coating

Logo
Cantilever Data Value Range*
Resonance Frequency 320 kHz 250 - 390 kHz
Force Constant 42 N/m 21 - 78 N/m
Length 125 µm 120 - 130 µm
Mean Width 30 µm 25 - 35 µm
Thickness 4 µm 3.5 - 4.5 µm

This AFM probe has alignment grooves on the back side of the support chip.

Pointprobe® AFM tip

Pointprobe® AFM tip

Product Description

NanoWorld® Pointprobe® NCH probes are designed for non-contact or tapping mode imaging. This AFM probe type combines high operation stability with outstanding sensitivity and fast scanning ability.

All SPM and AFM probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The AFM tip is shaped like a polygon based pyramid with a typical height of 10 - 15 µm.

The AFM tip radius of curvature is less than 25 nm.

For applications requiring lower resonance frequencies or an AFM cantilever length exceeding 125 µm we recommend our Pointprobe® type NCLPt.

Image A trapezoidal cross section of the AFM cantilever and therefore 30% wider (e.g. NCH) AFM cantilever detector side result in easier and faster laser adjustment. Additionally, because there is simply more space to place and reflect the laser beam, a higher SUM signal is reached.

Tip shape: Standard

Coating: Electrically Conductive

PtIr5 Coating

The PtIr5 coating consists of a 23 nm thick platinum iridium5 layer deposited on both sides of the AFM cantilever. The tip side coating enhances the conductivity of the AFM tip and allows electrical contacts. The detector side coating enhances the reflectance of the laser beam by a factor of 2 and prevents light from interfering within the AFM cantilever.

The coating process is optimized for stress compensation and wear resistance. Wear at the AFM tip can occur if operating in contact-, friction- or force modulation mode. As the coating is almost stress-free the bending of the AFM cantilever due to stress is less than 2 degrees.

Order Codes

Order Code Quantity Data Sheet
NCHPt-10 10 yes
NCHPt-20 20 yes
NCHPt-50 50 no
NCHPt-W 380 yes

NanoWorld® Platinum / Iridium5 (PtIr5) Coated AFM Tips Screencast

Subscribe to NanoWorld® Youtube Channel

Bruker® is a trademark of Bruker Corporation

Scientific publications mentioning use of this AFM probe


Eom S, Kavle P, Kang D, Kim Y, Martin LW, Hong S
Unveiling the Nanoscale Dielectric Gap and Its Influence on Ferroelectric Polarization Switching in Scanning Probe Microscopy
Advanced Functional Materials. 2025 Mar;35(11):2406944
DOI: https://doi.org/10.1002/adfm.202406944


Kapustić K, G. Ayani C, Pielić B, Plevová K, Mandić S, Šrut Rakić I
Visualizing Intercalation Effects in 2D Materials Using AFM-Based Techniques
The Journal of Physical Chemistry Letters. 2025 May 7;16(19):4804-11
DOI: https://doi.org/10.1021/acs.jpclett.5c00322


Seredin P, Goloshchapov D, Emelyanova A, Eremeev K, Peshkov Y, Shikhaliev K, Potapov A, Ippolitov Y, Kashkarov V, Nesterov D, Shapiro K
Rapid Deposition of the Biomimetic Hydroxyapatite-Polydopamine-Amino Acid Composite Layers onto the Natural Enamel
ACS omega. 2024 Apr 8;9(15):17012-27
DOI: https://doi.org/10.1021/acsomega.3c08491


Zhang M, Guo Z, Gellman AJ, Salvador PA, Rohrer GS
Influence of the molten SrCl2 treatment on the surface structure and photochemical reactivities of SrTiO3

Applied Surface Science. 2023 Nov 30;638:158111
DOI: https://doi.org/10.1016/j.apsusc.2023.158111


Senkić A, Bajo J, Supina A, Radatović B, Vujičić N
Effects of CVD growth parameters on global and local optical properties of MoS2 monolayers
Materials chemistry and physics. 2023 Feb 15;296:127185
DOI: https://doi.org/10.1016/j.matchemphys.2022.127185


Izumi R, Miyazaki M, Li YJ, Sugawara Y
High–low Kelvin probe force spectroscopy for measuring the interface state density
Beilstein Journal of Nanotechnology. 2023 Jan 31;14(1):175-89
DOI: https://doi.org/10.3762/bjnano.14.18


Zhou Z, Wang S, Zhou Z, Hu Y, Li Q, Xue J, Feng Z, Yan Q, Luo Z, Weng Y, Tang R.
Unconventional polarization fatigue in van der Waals layered ferroelectric ionic conductor CuInP2S6
Nature Communications. 2023 Dec 12;14(1):8254
DOI: https://doi.org/10.1038/s41467-023-44132-y


Liu C, Shviro M, Gago AS, Zaccarine SF, Bender G, Gazdzicki P, Morawietz T, Biswas I, Rasinski M, Everwand A, Schierholz R
Exploring the Interface of skin‐layered titanium fibers for electrochemical water splitting
Advanced Energy Materials. 2021 Feb;11(8):2002926
DOI: https://doi.org/10.1002/aenm.202002926


Zhou S, You L, Chaturvedi A, Morris SA, Herrin JS, Zhang N, Abdelsamie A, Hu Y, Chen J, Zhou Y, Dong S
Anomalous polarization switching and permanent retention in a ferroelectric ionic conductor
Materials Horizons. 2020;7(1):263-74
DOI: https://doi.org/10.1039/C9MH01215J


Moro D, Ulian G, Valdrè G
3D meso-nanostructures in cleaved and nanolithographed Mg-Al-hydroxysilicate (clinochlore): Topology, crystal-chemistry, and surface properties
Applied Clay Science. 2019 Mar 1;169:74-80
DOI: https://doi.org/10.1016/j.clay.2018.12.020


Otsuka Y, Nishijima S, Sakamoto L, Kajimoto K, Araki K, Misaka T, Ohoyama H, Matsumoto T
Chemical Control of Electronic Coupling between a Ruthenium Complex and Gold Electrode for Resonant Tunneling Conduction
Materials & Interfaces. 2019 Jun 6;11(27):24331-8
DOI: https://doi.org/10.1021/acsami.9b05569


Wang H, Zeng K
Domain structure, local surface potential distribution and relaxation of Pb (Zn1/3Nb2/3) O3–9% PbTiO3 (PZN–9% PT) single crystals
Journal of Materiomics. 2016 Dec 1;2(4):309-15
DOI: https://doi.org/10.1016/j.jmat.2016.08.001


Kawasaki S, Takahashi R, Yamamoto T, Kobayashi M, Kumigashira H, Yoshinobu J, Komori F, Kudo A, Lippmaa M
Photoelectrochemical water splitting enhanced by self-assembled metal nanopillars embedded in an oxide semiconductor photoelectrode
Nature communications. 2016 Jun 3;7(1):11818
DOI: https://doi.org/10.1038/ncomms11818


Moro D, Ulian G, Valdre G
Single molecule investigation of glycine–chlorite interaction by cross-correlated scanning probe microscopy and quantum mechanics simulations
Langmuir. 2015 Apr 21;31(15):4453-63
DOI: https://doi.org/10.1021/acs.langmuir.5b00161


Stevanović V, Hartman K, Jaramillo R, Ramanathan S, Buonassisi T, Graf P.
Variations of ionization potential and electron affinity as a function of surface orientation: The case of orthorhombic SnS
Applied Physics Letters. 2014 May 26;104(21).
DOI: https://doi.org/10.1063/1.4879558


Valdre G, Moro D
Radiofrequency impedance variation of characterized tip–sample nanocontacts in shear force microscopy with vertically oriented cantilevers connected to a vector network analyser
Measurement Science and Technology. 2013 Jul 26;24(9):095901
DOI: https://doi.org/10.1088/0957-0233/24/9/095901


Matsuda M, Kinoshita N, Fujishima M, Tanaka S, Tajima H, Hasegawa H
Electrochemically Fabricated Phthalocyanine-Based Molecular Conductor Films and Their Potential Use in Organic Electronic Devices
Applied Physics Express. 2013 Feb 5;6(2):021602
DOI: https://doi.org/10.7567/APEX.6.021602


Valdre G, Tosoni S, Moro D
Zeolitic-type Brønsted-Lowry sites distribution imaged on clinochlore
American Mineralogist. 2011 Oct 1;96(10):1461-6
DOI: https://doi.org/10.2138/am.2011.3774


Li T, Zeng K
Piezoelectric properties and surface potential of green abalone shell studied by scanning probe microscopy techniques
Acta Materialia. 2011 May 1;59(9):3667-79
DOI: https://doi.org/10.1016/j.actamat.2011.03.001


Wong MF, Zeng K
Nanoscale domains and preferred cracking planes in Pb (Zn1/3Nb2/3) O3–(6–7)% PbTiO3 single crystals studied by piezoresponse force microscopy and fractography
Journal of Applied Physics. 2010 Jun 15;107(12)
DOI: https://doi.org/10.1063/1.3452330


Valdrè G, Malferrari D, Brigatti MF
Crystallographic features and cleavage nanomorphology of chlinochlore: specific applications
Clays and clay minerals. 2009 Apr 1;57(2):183-93
DOI: https://doi.org/10.1346/CCMN.2009.0570205


Tsutsumi JY, Yoshida H, Murdey R, Sato N
Spontaneous buildup of surface potential with a thin film of a zwitterionic molecule giving noncentrosymmetric crystal structure
Applied Physics Letters. 2009 Nov 2;95(18)
DOI: https://doi.org/10.1063/1.3254217

For more information contact: info@nanoworld.com

Pointprobe® is a registered trademark of NanoWorld AG

All data are subject to change without notice.

NanoWorld AG
Rue des Saars 10
CH-2000 Neuchâtel,
Switzerland
www.nanoworld.com

For detailed information about our AFM probe product series please see below: