Type: SSS-NCH

SuperSharpSilicon™ - Non-contact / Tapping™ mode - High resonance frequency

Logo
Cantilever Data Value Range*
Resonance Frequency 320 kHz 250 - 390 kHz
Force Constant 42 N/m 21 - 78 N/m
Length 125 µm 120 - 130 µm
Mean Width 30 µm 25 - 35 µm
Thickness 4 µm 3.5 - 4.5 µm

This AFM probe has alignment grooves on the back side of the support chip.

SuperSharpSilicon™ Tip (SSS)

SuperSharpSilicon™ Tip (SSS)

Product Description

NanoWorld® Pointprobe® NCH probes are designed for non-contact or tapping mode imaging. This AFM probe type combines high operation stability with outstanding sensitivity and fast scanning ability.

All SPM and AFM probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The AFM tip is shaped like a polygon based pyramid with a typical height of 10 - 15 µm.

For enhanced resolution of nanostructures and microroughness we have developed an advanced AFM tip manufacturing process leading to unrivalled sharpness of the SuperSharpSilicon™ tip.

This AFM probe offers unique features:

  • Typical AFM tip radius of curvature of 2 nm
  • Guaranteed AFM tip radius of curvature 5 nm (yield >80%)
  • Half cone angle < 10° at the last 200 nm of the AFM tip

For applications requiring lower resonance frequencies or an AFM cantilever length exceeding 125 µm we recommend our Pointprobe® type SSS-NCL.

Image A trapezoidal cross section of the AFM cantilever and therefore 30% wider (e.g. NCH) AFM cantilever detector side result in easier and faster laser adjustment. Additionally, because there is simply more space to place and reflect the laser beam, a higher SUM signal is reached.

Tip shape: Supersharp

Coating: none

Order Codes

Order Code Quantity Data Sheet
SSS-NCH-10 10 yes
SSS-NCH-20 20 yes
SSS-NCH-50 50 no

NanoWorld® Pointprobe® SuperSharpSilicon™ AFM Tip (SSS) Screencast

Subscribe to NanoWorld® Youtube Channel

Bruker® is a trademark of Bruker Corporation

Scientific publications mentioning use of this AFM probe

Breakspear, Steven, Bernd Noecker, and Crisan Popescu
New insights into hair compartments swelling via atomic force microscopy and dynamic vapour sorption
International Journal of Cosmetic Science. 2025 Mar 14
DOI: https://doi.org/10.1111/ics.13061


Nia, Marzieh Heidari, Livia Garzia, Wajih Jawhar, Lee D. Wilson, and Theo GM van de Ven
Bioinspired complex cellulose nanorod-architectures: A model for dual-responsive smart carriers
Carbohydrate Polymers. 2025 Mar 15;352:123162
DOI: https://doi.org/10.1016/j.carbpol.2024.123162


Musa, Ishaq, and Rahaf Mousa.
Kelvin Probe Force Microscopy, Current Mapping, and Optical Properties of Hybrid ZnO Nanorods/Ag Nanoparticles
Surfaces. 2024 Sep 16;7(3):770-85
DOI: https://doi.org/10.1007/s11468-024-02367-5


Kumaki, Jiro
In Situ Real-Time Atomic Force Microscopy Observations of Chain Mobility at Polymer/Water Interfaces of Poly (methyl methacrylate), Poly (2-hydroxyethyl methacrylate), and Poly (2-methoxyethyl methacrylate) Films in Water
Langmuir. 2024 Feb 29;40(10):5270-7
DOI: https://doi.org/10.1021/acs.langmuir.3c03699


Tavakolian, Mandana, Roya Koshani, Nathalie Tufenkji, and Theo GM van de Ven
Antibacterial Pickering emulsions stabilized by bifunctional hairy nanocellulose
Journal of Colloid and Interface Science. 2023 Aug 1;643:328-39
DOI: https://doi.org/10.1016/j.jcis.2023.04.033


Heidari Nia, Marzieh, Said Ashkar, Jose Gil Munguia-Lopez, Joseph Kinsella, and Theo GM van de Ven
Hairy nanocellulose-based supramolecular architectures for sustained drug release
Biomacromolecules. 2023 Apr 17;24(5):2100-17
DOI: https://doi.org/10.1021/acs.biomac.2c01514


Moraille, Patricia, Zahra Abdali, Mohini Ramkaran, David Polcari, Gregory S. Patience, Noémie‐Manuelle Dorval Courchesne, and Antonella Badia
Experimental methods in chemical engineering: Atomic force microscopy− AFM
The Canadian Journal of Chemical Engineering. 2022 Oct;100(10):2778-806
DOI: https://doi.org/10.1002/cjce.24407


Koike, Kouki, and Jiro Kumaki
Chain Movements at the Topmost Surface of Poly (methyl methacrylate) and Polystyrene Films Directly Evaluated by In Situ High-Temperature Atomic Force Microscopy
Langmuir. 2022 Nov 1;38(45):13707-19
DOI: https://doi.org/10.1021/acs.langmuir.2c01788


Kun, Péter, Bálint Fülöp, Gergely Dobrik, Péter Nemes-Incze, István Endre Lukács, Szabolcs Csonka, Chanyong Hwang, and Levente Tapasztó
Robust quantum point contact operation of narrow graphene constrictions patterned by AFM cleavage lithography
npj 2D Materials and Applications. 2020 Dec 7;4(1):43
DOI: https://doi.org/10.1038/s41699-020-00177-x


Nia, Marzieh Heidari, Mandana Tavakolian, Ali Reza Kiasat, and Theo GM van de Ven
Hybrid aerogel nanocomposite of dendritic colloidal silica and hairy nanocellulose: an effective dye adsorbent
Langmuir. 2020 Sep 16;36(40):11963-74
DOI: https://doi.org/10.1021/acs.langmuir.0c02090


Tavakolian, Mandana, Hannah Wiebe, Mohammad Amin Sadeghi, and Theo GM van de Ven
Dye removal using hairy nanocellulose: experimental and theoretical investigations
ACS applied materials & interfaces. 2019 Dec 10;12(4):5040-9
DOI: https://doi.org/10.1021/acsami.9b18679


Vanderlinden, Willem, Tine Brouns, Philipp U. Walker, Pauline J. Kolbeck, Lukas F. Milles, Wolfgang Ott, Philipp C. Nickels, Zeger Debyser, and Jan Lipfert
The free energy landscape of retroviral integration
Nature communications. 2019 Oct 18;10(1):4738
DOI: https://doi.org/10.1038/s41467-019-12649-w


Tavakolian, Mandana, Mira Okshevsky, Theo GM van de Ven, and Nathalie Tufenkji.
Developing antibacterial nanocrystalline cellulose using natural antibacterial agents
ACS applied materials & interfaces. 2018 Sep 12;10(40):33827-38
DOI: https://doi.org/10.1021/acsami.8b08770


Cohen, Moshik, Yossi Abulafia, Dmitry Lev, Aaron Lewis, Reuven Shavit, and Zeev Zalevsky
Wireless communication with nanoplasmonic data carriers: macroscale propagation of nanophotonic plasmon polaritons probed by near-field nanoimaging
Nano letters. 2017 Sep 13;17(9):5181-6
DOI: https://doi.org/10.1021/acs.nanolett.7b00266


Cohen, Moshik, and Adi Salomon
Secondary electron cloaking with broadband plasmonic resonant absorbers
The journal of physical chemistry letters. 2017 Aug 17;8(16):3912-6
DOI: https://doi.org/10.1021/acs.jpclett.7b00869


Cohen, Moshik, Yossi Abulafia, Reuven Shavit, and Zeev Zalevsky
Secondary electron imaging of light at the nanoscale
ACS nano. 2017 Mar 28;11(3):3274-81
DOI: https://doi.org/10.1021/acsnano.7b00548


de Almeida, Paula, Lívia Mesquita Dias Loiola, Cesar Liberato Petzhold, and Maria Isabel Felisberti
Sucrose methacrylate‐based amphiphilic block copolymers
Macromolecular Chemistry and Physics. 2017 Feb;218(4):1600452
DOI: https://doi.org/10.1002/macp.201600452


Cohen, Moshik, Reuven Shavit, and Zeev Zalevsky
Enabling high efficiency nanoplasmonics with novel nanoantenna architectures
Scientific reports. 2015 Dec 1;5(1):17562
DOI: https://doi.org/10.1038/srep17562


Loiola, Lívia MD, Bruna A. Más, Eliana AR Duek, and Maria I. Felisberti
Amphiphilic multiblock copolymers of PLLA, PEO and PPO blocks: Synthesis, properties and cell affinity
European Polymer Journal. 2015 Jul 1;68:618-29
DOI: https://doi.org/10.1016/j.eurpolymj.2015.03.034


Fuchs, Franz, Mathieu Linares, Christiaan de Vet, Philippe Leclère, Renaud Demadrille, and Benjamin Grévin
On the Photo‐Induced Charge‐Carrier Generation within Monolayers of Self‐Assembled Organic Donor–Acceptor Dyads
Advanced Materials. 2014 Oct;26(37):6416-22
DOI: https://doi.org/10.1002/adma.201401221


Cohen, Moshik, Reuven Shavit, and Zeev Zalevsky
Observing optical plasmons on a single nanometer scale
Scientific Reports. 2014 Feb 21;4(1):4096
DOI: https://doi.org/10.1038/srep04096


Trapnauskas, Justinas, Mathias Rommel, Anton J. Bauer, and Lothar Frey
Thickness mapping of high-κ dielectrics at the nanoscale
Applied Physics Letters. 2014 Feb 3;104(5)
DOI: https://doi.org/10.1063/1.4863947


Yang, Han, Md Nur Alam, and Theo GM van de Ven
Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers
Cellulose. 2013 Aug;20:1865-75
DOI: https://doi.org/10.1007/s10570-013-9966-7


Kolarov, Felix, Klaus Niedergall, Monika Bach, Günter EM Tovar, and Günter Gauglitz
Optical sensors with molecularly imprinted nanospheres: a promising approach for robust and label-free detection of small molecules
Analytical and bioanalytical chemistry. 2012 Apr;402:3245-52
DOI: https://doi.org/10.1007/s00216-011-5592-0


Kim, Young-Pil, Sang Jin Park, Dohoon Lee, and Hak-Sung Kim
Electrochemical glucose biosensor by electrostatic binding of PQQ-glucose dehydrogenase onto self-assembled monolayers on gold
Journal of Applied Electrochemistry. 2012 Jun;42:383-90
DOI: https://doi.org/10.1007/s10800-012-0409-1


Popeney, Chris S., Antonio Setaro, Radu‐Cristian Mutihac, Pascal Bluemmel, Britta Trappmann, Jonathan Vonneman, Stephanie Reich, and Rainer Haag
Polyglycerol‐Derived Amphiphiles for the Solubilization of Single‐Walled Carbon Nanotubes in Water: A Structure–Property Study
ChemPhysChem. 2012 Jan 16;13(1):203-11
DOI: https://doi.org/10.1002/cphc.201100691

For more information contact: info@nanoworld.com

Pointprobe® is a registered trademark of NanoWorld AG

All data are subject to change without notice.

NanoWorld AG
Rue des Saars 10
CH-2000 Neuchâtel,
Switzerland
www.nanoworld.com

For detailed information about our AFM probe product series please see below: