Type: CDT-NCHR

Conductive Diamond coated AFM tip - Non-contact/Tapping™ mode High resonance frequency - Reflex coating

Logo
Cantilever Data Value Range*
Resonance Frequency 400 kHz 280 - 510 kHz
Force Constant 80 N/m 42 - 142 N/m
Length 125 µm 120 - 130 µm
Mean Width 30 µm 25 - 35 µm
Thickness 4 µm 3.5 - 4.5 µm

This AFM probe has alignment grooves on the back side of the support chip.

diamond coated tip

diamond coated tip

Product Description

NanoWorld® Pointprobe® NCH probes are designed for non-contact or tapping mode imaging. This AFM probe type combines high operation stability with outstanding sensitivity and fast scanning ability.

All SPM and AFM probes of the Pointprobe® series are made from monolithic silicon which is highly doped to dissipate static charge. They are chemically inert and offer a high mechanical Q-factor for high sensitivity. The AFM tip is shaped like a polygon based pyramid with a typical height of 10 - 15 µm.

For applications that require hard contact between tip and sample this AFM probe offers a real diamond tip-side coating. This coating features extremely high wear resistance due to the unsurpassed hardness of diamond. The typical macroscopic AFM tip radius of curvature lies in the range between 100 and 200 nm. Nanoroughnesses in the 10 nm regime improve the resolution on flat surfaces.

The CDT features a conductive diamond coating. Some typical applications for this AFM tip are Tunneling AFM (Conducting AFM) and Scanning Capacitance Microscopy (SCM).

For applications requiring lower resonance frequencies or an AFM cantilever length exceeding 125 µm we recommend our Pointprobe® type CDT-NCLR.

Image A trapezoidal cross section of the AFM cantilever and therefore 30% wider (e.g. NCH) AFM cantilever detector side result in easier and faster laser adjustment. Additionally, because there is simply more space to place and reflect the laser beam, a higher SUM signal is reached.

Tip shape: Standard

Coating: Diamond

Conductive Diamond Coating / Aluminum Reflex Coating

The conductive diamond coating consists of a 100 nm thick polycrystalline diamond layer deposited on the tip side of the AFM cantilever resulting in an unsurpassed hardness of the AFM tip. The coating is highly doped with boron which leads to a macroscopic resistivity of 0.003 - 0.005 Ohm•cm.

The aluminum reflex coating deposited on the detector side of the AFM cantilever enhances the reflectance of the laser beam and prevents light from interfering within the AFM cantilever.

Order Codes

Order Code Quantity Data Sheet
CDT-NCHR-10 10 yes
CDT-NCHR-20 20 yes
CDT-NCHR-50 50 no

NanoWorld® Pointprobe® Diamond Coated AFM Tip (DT), Conductive Diamond Coated AFM Tip (CDT) Screencast

Subscribe to NanoWorld® Youtube Channel

Bruker® is a trademark of Bruker Corporation

Scientific publications mentioning use of this AFM probe


Eom S, Kavle P, Kang D, Kim Y, Martin LW, Hong S
Unveiling the Nanoscale Dielectric Gap and Its Influence on Ferroelectric Polarization Switching in Scanning Probe Microscopy
Advanced Functional Materials. 2025 Mar;35(11):2406944
DOI: https://doi.org/10.1002/adfm.202406944


Jung H, Kim SH
Evolution of Electrical Degradation in Ternary Cathode Materials of Lithium-Ion Batteries
Available at SSRN 5163096
DOI: http://doi.org/10.2139/ssrn.5163096


Takasaka R, Umehara N, Tokoroyama T, Zhang R, Okamura K, Fukuda J, Hayashi T, Abe K, Wakamatsu S
Abnormal Wear due to Synergistic Effects of Corrosion and Cavitation in High-Speed Flow of Glycol-Based Hydraulic Fluid Valve Surfaces
Tribology Online. 2025 Jun 30;20(2):100-9
DOI:  https://doi.org/10.2474/trol.20.100


Cho M, yeon Park S, Jung H, Kim SH
Characterization of identical lithium-ion battery electrodes before and after charge/discharge cycles via in-plane large-area polishing
Nanotechnology. 2024 Oct 4;35(50):505401
DOI: https://doi.org/10.1088/1361-6528/ad7f60


Tokoroyama T, Horikawa S, Mimata J, Umehara N, Murashima M
Effect of Water on Wear of DLC Coatings in High Temperature and Pressurized Ethanol
Tribology Letters. 2024 Dec;72(4):111
DOI: https://doi.org/10.1007/s11249-024-01910-z


Shen G, Zhu L, Wang Z, Zhao J, Shu L
Tuning Self-Polarization of Epitaxial BiFeO3 Thin Films through Interface Effects
ACS Applied Materials & Interfaces. 2024 Dec 9;16(50):70038-46
DOI: https://doi.org/10.1021/acsami.4c14995


Cho M, Lee SH, Yuk E, Park H, Kim SH
Nanoscale electrical characterization of ambient-induced surface impurities on high-nickel cathode materials for lithium-ion batteries
Journal of Alloys and Compounds. 2023 Nov 10;963:171215
DOI: https://doi.org/10.1016/j.jallcom.2023.171215


Itasaka H, Liu Z, Mimura KI, Hamamoto K
Ultra-thin barium titanate nanocrystal monolayer capacitor with graphene electrode
Applied Physics Letters. 2023 Aug 28;123(9)
DOI: https://doi.org/10.1063/5.0156549


Nath R, Polomoff NA, Song J, Moran TJ, Ramesh R, Huey BD
Nanoscale Activation Energy Mapping and Leveraging for Accelerating Ferroelectric Domain Nucleation and Growth
Advanced Electronic Materials. 2022 Jun;8(6):2101389
DOI: https://doi.org/10.1002/aelm.202101389


Aryeetey F, Pourianejad S, Ayanbajo O, Nowlin K, Ignatova T, Aravamudhan S
Bandgap recovery of monolayer MoS 2 using defect engineering and chemical doping
RSC advances. 2021;11(34):20893-8
DOI: https://doi.org/10.1039/D1RA02888J


Yang Y, Xi Z, Dong Y, Zheng C, Hu H, Li X, Jiang Z, Lu WC, Wu D, Wen Z
Spin-filtering ferroelectric tunnel junctions as multiferroic synapses for neuromorphic computing
ACS Applied Materials & Interfaces. 2020 Dec 7;12(50):56300-9
DOI: https://doi.org/10.1021/acsami.0c16385


Li R, Xu Y, Song J, Wang P, Li C, Wu D
Preparation and characterization of a flexible ferroelectric tunnel junction
Applied Physics Letters. 2020 Jun 1;116(22)
DOI: https://doi.org/10.1063/5.0006638


Tian G, Yang W, Song X, Zheng D, Zhang L, Chen C, Li P, Fan H, Yao J, Chen D, Fan Z
Manipulation of conductive domain walls in confined ferroelectric nanoislands
Advanced Functional Materials. 2019 Aug;29(32):1807276
DOI: https://doi.org/10.1002/adfm.201807276


Park SY, Baek WJ, Lee SY, Seo JA, Kang YS, Koh M, Kim SH
Probing electrical degradation of cathode materials for lithium-ion batteries with nanoscale resolution
Nano Energy. 2018 Jul 1;49:1-6
DOI: https://doi.org/10.1016/j.nanoen.2018.04.005


Kim SH, Kim YS, Baek WJ, Heo S, Han S, Jung H
Nanoscale electrical resistance imaging of solid electrolyte interphases in lithium-ion battery anodes
Journal of Power Sources. 2018 Dec 15;407:1-5.
DOI: https://doi.org/10.1016/j.jpowsour.2018.10.027


Li C, Shen Y, Huang R, Kumamoto A, Chen S, Dai C, Yoshiya M, Fujii S, Funai K, Fisher CA, Wang Y.
Hierarchically structured thermoelectric materials in quaternary system Cu–Zn–Sn–S featuring a mosaic-type nanostructure
ACS Applied Nano Materials. 2018 May 25;1(6):2579-88
DOI: https://doi.org/10.1021/acsanm.8b00278


Fan Z, Fan H, Yang L, Li P, Lu Z, Tian G, Huang Z, Li Z, Yao J, Luo Q, Chen C
Resistive switching induced by charge trapping/detrapping: a unified mechanism for colossal electroresistance in certain Nb: SrTiO 3-based heterojunctions
Journal of Materials Chemistry C. 2017;5(29):7317-27
DOI: https://doi.org/10.1039/C7TC02197F


Kutes Y, Luria J, Sun Y, Moore A, Aguirre BA, Cruz-Campa JL, Aindow M, Zubia D, Huey BD
Ion-damage-free planarization or shallow angle sectioning of solar cells for mapping grain orientation and nanoscale photovoltaic properties
Nanotechnology. 2017 Apr 11;28(18):185705
DOI: https://doi.org/10.1088/1361-6528/aa67c2


Xi Z, Ruan J, Li C, Zheng C, Wen Z, Dai J, Li A, Wu D
Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier
Nature communications. 2017 May 17;8(1):15217
DOI: https://doi.org/10.1038/ncomms15217


Luria J, Kutes Y, Moore A, Zhang L, Stach EA, Huey BD
Charge transport in CdTe solar cells revealed by conductive tomographic atomic force microscopy
Nature energy. 2016 Sep 26;1(11):1-6
DOI: https://doi.org/10.1038/nenergy.2016.150


Wen Z, Qiu X, Li C, Zheng C, Ge X, Li A, Wu D
Mechanical switching of ferroelectric polarization in ultrathin BaTiO3 films: The effects of epitaxial strain
Applied Physics Letters. 2014 Jan 27;104(4).
DOI: https://doi.org/10.1063/1.4863855


Zhang Q, Valanoor N, Standard O
Chemical solution deposition derived (001)-oriented epitaxial BiFeO3 thin films with robust ferroelectric properties using stoichiometric precursors
Journal of Applied Physics. 2014 Aug 14;116(6)
DOI: https://doi.org/10.1063/1.4891311


Pantel D, Lu H, Goetze S, Werner P, Jik Kim D, Gruverman A, Hesse D, Alexe M
Tunnel electroresistance in junctions with ultrathin ferroelectric Pb (Zr0. 2Ti0. 8) O3 barriers
Applied Physics Letters. 2012 Jun 4;100(23).
DOI: https://doi.org/10.1063/1.4726120


Kumar A, Shivareddy SG, Correa M, Resto O, Choi Y, Cole MT, Katiyar RS, Scott JF, Amaratunga GA, Lu H, Gruverman A
Ferroelectric–carbon nanotube memory devices
Nanotechnology. 2012 Mar 30;23(16):165702
DOI: https://doi.org/10.1088/0957-4484/23/16/165702


Totokawa M, Tani T, Yoshimura M, Yamashita S, Morikawa K, Mitsuoka Y, Nonaka T
Chemical and Piezoresistive Microanalyses at the Interface of RuO2–Glass Diffusion Pairs
Journal of the American Ceramic Society. 2010 Feb;93(2):481-7
DOI: https://doi.org/10.1111/j.1551-2916.2009.03403.x


Rommel M, Spoldi G, Yanev V, Beuer S, Amon B, Jambreck J, Petersen S, Bauer AJ, Frey L
Comprehensive study of focused ion beam induced lateral damage in silicon by scanning probe microscopy techniques
Journal of Vacuum Science & Technology B. 2010 May 1;28(3):595-607
DOI: https://doi.org/10.1116/1.3431085

For more information contact: info@nanoworld.com

Pointprobe® is a registered trademark of NanoWorld AG

All data are subject to change without notice.

NanoWorld AG
Rue des Saars 10
CH-2000 Neuchâtel,
Switzerland
www.nanoworld.com

For detailed information about our AFM probe product series please see below: